Jit64: optionally accurate NaNs

When AccurateNaNs is enabled, NaNs are handled accurately by checking
for NaN results and choosing the correct input NaN or replacing x86's
generated -QNaN with +QNaN.
This commit is contained in:
Tillmann Karras 2015-06-07 14:38:09 +02:00
parent 881f6db2ab
commit aec38466d9
7 changed files with 183 additions and 42 deletions

View file

@ -47,7 +47,7 @@ namespace BootManager
// Apply fire liberally
struct ConfigCache
{
bool valid, bCPUThread, bSkipIdle, bSyncGPUOnSkipIdleHack, bFPRF, bMMU, bDCBZOFF, m_EnableJIT, bDSPThread,
bool valid, bCPUThread, bSkipIdle, bSyncGPUOnSkipIdleHack, bFPRF, bAccurateNaNs, bMMU, bDCBZOFF, m_EnableJIT, bDSPThread,
bSyncGPU, bFastDiscSpeed, bDSPHLE, bHLE_BS2, bProgressive;
int iCPUCore, Volume;
int iWiimoteSource[MAX_BBMOTES];
@ -106,6 +106,7 @@ bool BootCore(const std::string& _rFilename)
config_cache.bSyncGPUOnSkipIdleHack = StartUp.bSyncGPUOnSkipIdleHack;
config_cache.iCPUCore = StartUp.iCPUCore;
config_cache.bFPRF = StartUp.bFPRF;
config_cache.bAccurateNaNs = StartUp.bAccurateNaNs;
config_cache.bMMU = StartUp.bMMU;
config_cache.bDCBZOFF = StartUp.bDCBZOFF;
config_cache.bSyncGPU = StartUp.bSyncGPU;
@ -146,6 +147,7 @@ bool BootCore(const std::string& _rFilename)
core_section->Get("SkipIdle", &StartUp.bSkipIdle, StartUp.bSkipIdle);
core_section->Get("SyncOnSkipIdle", &StartUp.bSyncGPUOnSkipIdleHack, StartUp.bSyncGPUOnSkipIdleHack);
core_section->Get("FPRF", &StartUp.bFPRF, StartUp.bFPRF);
core_section->Get("AccurateNaNs", &StartUp.bAccurateNaNs, StartUp.bAccurateNaNs);
core_section->Get("MMU", &StartUp.bMMU, StartUp.bMMU);
core_section->Get("DCBZ", &StartUp.bDCBZOFF, StartUp.bDCBZOFF);
core_section->Get("SyncGPU", &StartUp.bSyncGPU, StartUp.bSyncGPU);
@ -273,6 +275,7 @@ void Stop()
StartUp.bSyncGPUOnSkipIdleHack = config_cache.bSyncGPUOnSkipIdleHack;
StartUp.iCPUCore = config_cache.iCPUCore;
StartUp.bFPRF = config_cache.bFPRF;
StartUp.bAccurateNaNs = config_cache.bAccurateNaNs;
StartUp.bMMU = config_cache.bMMU;
StartUp.bDCBZOFF = config_cache.bDCBZOFF;
StartUp.bSyncGPU = config_cache.bSyncGPU;

View file

@ -33,7 +33,7 @@ SCoreStartupParameter::SCoreStartupParameter()
bJITPairedOff(false), bJITSystemRegistersOff(false),
bJITBranchOff(false),
bJITILTimeProfiling(false), bJITILOutputIR(false),
bFPRF(false),
bFPRF(false), bAccurateNaNs(false),
bCPUThread(true), bDSPThread(false), bDSPHLE(true),
bSkipIdle(true), bSyncGPUOnSkipIdleHack(true), bNTSC(false), bForceNTSCJ(false),
bHLE_BS2(true), bEnableCheats(false),
@ -78,6 +78,7 @@ void SCoreStartupParameter::LoadDefaults()
bDSPHLE = true;
bFastmem = true;
bFPRF = false;
bAccurateNaNs = false;
bMMU = false;
bDCBZOFF = false;
iBBDumpPort = -1;

View file

@ -163,6 +163,7 @@ struct SCoreStartupParameter
bool bFastmem;
bool bFPRF;
bool bAccurateNaNs;
bool bCPUThread;
bool bDSPThread;

View file

@ -135,13 +135,18 @@ public:
Gen::FixupBranch JumpIfCRFieldBit(int field, int bit, bool jump_if_set = true);
void SetFPRFIfNeeded(Gen::X64Reg xmm);
void HandleNaNs(UGeckoInstruction inst, Gen::X64Reg xmm_out, Gen::X64Reg xmm_in);
void MultiplyImmediate(u32 imm, int a, int d, bool overflow);
typedef u32 (*Operation)(u32 a, u32 b);
void regimmop(int d, int a, bool binary, u32 value, Operation doop, void (Gen::XEmitter::*op)(int, const Gen::OpArg&, const Gen::OpArg&),
bool Rc = false, bool carry = false);
void fp_tri_op(int d, int a, int b, bool reversible, bool single, void (Gen::XEmitter::*avxOp)(Gen::X64Reg, Gen::X64Reg, const Gen::OpArg&),
void (Gen::XEmitter::*sseOp)(Gen::X64Reg, const Gen::OpArg&), bool packed = false, bool roundRHS = false);
void regimmop(int d, int a, bool binary, u32 value, Operation doop,
void (Gen::XEmitter::*op)(int, const Gen::OpArg&, const Gen::OpArg&),
bool Rc = false, bool carry = false);
Gen::X64Reg fp_tri_op(int d, int a, int b, bool reversible, bool single,
void (Gen::XEmitter::*avxOp)(Gen::X64Reg, Gen::X64Reg, const Gen::OpArg&),
void (Gen::XEmitter::*sseOp)(Gen::X64Reg, const Gen::OpArg&),
bool packed, bool preserve_inputs, bool roundRHS = false);
void FloatCompare(UGeckoInstruction inst, bool upper = false);
// OPCODES

View file

@ -138,6 +138,20 @@ public:
LockX(args...);
}
template<typename T>
void UnlockX(T x)
{
if (!xregs[x].locked)
PanicAlert("RegCache: x %i already unlocked!", x);
xregs[x].locked = false;
}
template<typename T, typename... Args>
void UnlockX(T first, Args... args)
{
UnlockX(first);
UnlockX(args...);
}
void UnlockAll();
void UnlockAllX();

View file

@ -10,38 +10,37 @@
using namespace Gen;
static const u64 GC_ALIGNED16(psSignBits[2]) = {0x8000000000000000ULL, 0x0000000000000000ULL};
static const u64 GC_ALIGNED16(psSignBits2[2]) = {0x8000000000000000ULL, 0x8000000000000000ULL};
static const u64 GC_ALIGNED16(psAbsMask[2]) = {0x7FFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL};
static const u64 GC_ALIGNED16(psAbsMask2[2]) = {0x7FFFFFFFFFFFFFFFULL, 0x7FFFFFFFFFFFFFFFULL};
static const u64 GC_ALIGNED16(psSignBits[2]) = {0x8000000000000000ULL, 0x0000000000000000ULL};
static const u64 GC_ALIGNED16(psSignBits2[2]) = {0x8000000000000000ULL, 0x8000000000000000ULL};
static const u64 GC_ALIGNED16(psAbsMask[2]) = {0x7FFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL};
static const u64 GC_ALIGNED16(psAbsMask2[2]) = {0x7FFFFFFFFFFFFFFFULL, 0x7FFFFFFFFFFFFFFFULL};
static const u64 GC_ALIGNED16(psGeneratedQNaN[2]) = {0x7FF8000000000000ULL, 0x7FF8000000000000ULL};
static const double GC_ALIGNED16(half_qnan_and_s32_max[2]) = {0x7FFFFFFF, -0x80000};
void Jit64::fp_tri_op(int d, int a, int b, bool reversible, bool single, void (XEmitter::*avxOp)(X64Reg, X64Reg, const OpArg&),
void (XEmitter::*sseOp)(X64Reg, const OpArg&), bool packed, bool roundRHS)
X64Reg Jit64::fp_tri_op(int d, int a, int b, bool reversible, bool single, void (XEmitter::*avxOp)(X64Reg, X64Reg, const OpArg&),
void (XEmitter::*sseOp)(X64Reg, const OpArg&), bool packed, bool preserve_inputs, bool roundRHS)
{
fpr.Lock(d, a, b);
fpr.BindToRegister(d, d == a || d == b || !single);
X64Reg dest = preserve_inputs ? XMM1 : fpr.RX(d);
if (roundRHS)
{
if (d == a)
if (d == a && !preserve_inputs)
{
Force25BitPrecision(XMM0, fpr.R(b), XMM1);
(this->*sseOp)(fpr.RX(d), R(XMM0));
}
else
{
Force25BitPrecision(fpr.RX(d), fpr.R(b), XMM0);
(this->*sseOp)(fpr.RX(d), fpr.R(a));
Force25BitPrecision(dest, fpr.R(b), XMM0);
(this->*sseOp)(dest, fpr.R(a));
}
}
else
{
avx_op(avxOp, sseOp, fpr.RX(d), fpr.R(a), fpr.R(b), packed, reversible);
avx_op(avxOp, sseOp, dest, fpr.R(a), fpr.R(b), packed, reversible);
}
if (single)
ForceSinglePrecision(fpr.RX(d), fpr.R(d), packed, true);
SetFPRFIfNeeded(fpr.RX(d));
fpr.UnlockAll();
return dest;
}
// We can avoid calculating FPRF if it's not needed; every float operation resets it, so
@ -56,6 +55,112 @@ void Jit64::SetFPRFIfNeeded(X64Reg xmm)
SetFPRF(xmm);
}
void Jit64::HandleNaNs(UGeckoInstruction inst, X64Reg xmm_out, X64Reg xmm)
{
// | PowerPC | x86
// ---------------------+----------+---------
// input NaN precedence | 1*3 + 2 | 1*2 + 3
// generated QNaN | positive | negative
//
// Dragon Ball: Revenge of King Piccolo requires generated NaNs
// to be positive, so we'll have to handle them manually.
if (!SConfig::GetInstance().m_LocalCoreStartupParameter.bAccurateNaNs)
{
if (xmm_out != xmm)
MOVAPD(xmm_out, R(xmm));
return;
}
_assert_(xmm != XMM0);
std::vector<u32> inputs;
u32 a = inst.FA, b = inst.FB, c = inst.FC;
for (u32 i : {a, b, c})
{
if (!js.op->fregsIn[i])
continue;
if (std::find(inputs.begin(), inputs.end(), i) == inputs.end())
inputs.push_back(i);
}
if (inst.OPCD != 4)
{
// not paired-single
UCOMISD(xmm, R(xmm));
FixupBranch handle_nan = J_CC(CC_P, true);
SwitchToFarCode();
SetJumpTarget(handle_nan);
std::vector<FixupBranch> fixups;
for (u32 x : inputs)
{
MOVDDUP(xmm, fpr.R(x));
UCOMISD(xmm, R(xmm));
fixups.push_back(J_CC(CC_P));
}
MOVDDUP(xmm, M(psGeneratedQNaN));
for (FixupBranch fixup : fixups)
SetJumpTarget(fixup);
FixupBranch done = J(true);
SwitchToNearCode();
SetJumpTarget(done);
}
else
{
// paired-single
std::reverse(inputs.begin(), inputs.end());
if (cpu_info.bSSE4_1)
{
avx_op(&XEmitter::VCMPPD, &XEmitter::CMPPD, XMM0, R(xmm), R(xmm), CMP_UNORD);
PTEST(XMM0, R(XMM0));
FixupBranch handle_nan = J_CC(CC_NZ, true);
SwitchToFarCode();
SetJumpTarget(handle_nan);
BLENDVPD(xmm, M(psGeneratedQNaN));
for (u32 x : inputs)
{
avx_op(&XEmitter::VCMPPD, &XEmitter::CMPPD, XMM0, fpr.R(x), fpr.R(x), CMP_UNORD);
BLENDVPD(xmm, fpr.R(x));
}
FixupBranch done = J(true);
SwitchToNearCode();
SetJumpTarget(done);
}
else
{
// SSE2 fallback
X64Reg tmp = fpr.GetFreeXReg();
fpr.FlushLockX(tmp);
MOVAPD(XMM0, R(xmm));
CMPPD(XMM0, R(XMM0), CMP_UNORD);
MOVMSKPD(RSCRATCH, R(XMM0));
TEST(32, R(RSCRATCH), R(RSCRATCH));
FixupBranch handle_nan = J_CC(CC_NZ, true);
SwitchToFarCode();
SetJumpTarget(handle_nan);
MOVAPD(tmp, R(XMM0));
PANDN(XMM0, R(xmm));
PAND(tmp, M(psGeneratedQNaN));
POR(tmp, R(XMM0));
MOVAPD(xmm, R(tmp));
for (u32 x : inputs)
{
MOVAPD(XMM0, fpr.R(x));
CMPPD(XMM0, R(XMM0), CMP_ORD);
MOVAPD(tmp, R(XMM0));
PANDN(XMM0, fpr.R(x));
PAND(xmm, R(tmp));
POR(xmm, R(XMM0));
}
FixupBranch done = J(true);
SwitchToNearCode();
SetJumpTarget(done);
fpr.UnlockX(tmp);
}
}
if (xmm_out != xmm)
MOVAPD(xmm_out, R(xmm));
}
void Jit64::fp_arith(UGeckoInstruction inst)
{
INSTRUCTION_START
@ -80,20 +185,27 @@ void Jit64::fp_arith(UGeckoInstruction inst)
packed = false;
bool round_input = single && !jit->js.op->fprIsSingle[inst.FC];
bool preserve_inputs = SConfig::GetInstance().m_LocalCoreStartupParameter.bAccurateNaNs;
X64Reg dest = INVALID_REG;
switch (inst.SUBOP5)
{
case 18: fp_tri_op(d, a, b, false, single, packed ? &XEmitter::VDIVPD : &XEmitter::VDIVSD,
packed ? &XEmitter::DIVPD : &XEmitter::DIVSD, packed); break;
case 20: fp_tri_op(d, a, b, false, single, packed ? &XEmitter::VSUBPD : &XEmitter::VSUBSD,
packed ? &XEmitter::SUBPD : &XEmitter::SUBSD, packed); break;
case 21: fp_tri_op(d, a, b, true, single, packed ? &XEmitter::VADDPD : &XEmitter::VADDSD,
packed ? &XEmitter::ADDPD : &XEmitter::ADDSD, packed); break;
case 25: fp_tri_op(d, a, c, true, single, packed ? &XEmitter::VMULPD : &XEmitter::VMULSD,
packed ? &XEmitter::MULPD : &XEmitter::MULSD, packed, round_input); break;
case 18: dest = fp_tri_op(d, a, b, false, single, packed ? &XEmitter::VDIVPD : &XEmitter::VDIVSD,
packed ? &XEmitter::DIVPD : &XEmitter::DIVSD, packed, preserve_inputs); break;
case 20: dest = fp_tri_op(d, a, b, false, single, packed ? &XEmitter::VSUBPD : &XEmitter::VSUBSD,
packed ? &XEmitter::SUBPD : &XEmitter::SUBSD, packed, preserve_inputs); break;
case 21: dest = fp_tri_op(d, a, b, true, single, packed ? &XEmitter::VADDPD : &XEmitter::VADDSD,
packed ? &XEmitter::ADDPD : &XEmitter::ADDSD, packed, preserve_inputs); break;
case 25: dest = fp_tri_op(d, a, c, true, single, packed ? &XEmitter::VMULPD : &XEmitter::VMULSD,
packed ? &XEmitter::MULPD : &XEmitter::MULSD, packed, preserve_inputs, round_input); break;
default:
_assert_msg_(DYNA_REC, 0, "fp_arith WTF!!!");
}
HandleNaNs(inst, fpr.RX(d), dest);
if (single)
ForceSinglePrecision(fpr.RX(d), fpr.R(d), packed, true);
SetFPRFIfNeeded(fpr.RX(d));
fpr.UnlockAll();
}
void Jit64::fmaddXX(UGeckoInstruction inst)
@ -220,13 +332,17 @@ void Jit64::fmaddXX(UGeckoInstruction inst)
if (inst.SUBOP5 == 31) //nmadd
PXOR(XMM1, M(packed ? psSignBits2 : psSignBits));
}
fpr.BindToRegister(d, !single);
if (single)
ForceSinglePrecision(fpr.RX(d), R(XMM1), packed, true);
{
HandleNaNs(inst, fpr.RX(d), XMM1);
ForceSinglePrecision(fpr.RX(d), fpr.R(d), packed, true);
}
else
{
HandleNaNs(inst, XMM1, XMM1);
MOVSD(fpr.RX(d), R(XMM1));
}
SetFPRFIfNeeded(fpr.RX(d));
fpr.UnlockAll();
}
@ -379,7 +495,6 @@ void Jit64::FloatCompare(UGeckoInstruction inst, bool upper)
}
else
{
// Are we masking sNaN invalid floating point exceptions? If not this could crash if we don't handle the exception?
UCOMISD(fpr.RX(b), fpr.R(a));
}

View file

@ -38,7 +38,7 @@ void Jit64::ps_sum(UGeckoInstruction inst)
fpr.Lock(a, b, c, d);
OpArg op_a = fpr.R(a);
fpr.BindToRegister(d, d == b || d == c);
X64Reg tmp = XMM0;
X64Reg tmp = XMM1;
MOVDDUP(tmp, op_a); // {a.ps0, a.ps0}
ADDPD(tmp, fpr.R(b)); // {a.ps0 + b.ps0, a.ps0 + b.ps1}
switch (inst.SUBOP5)
@ -55,9 +55,9 @@ void Jit64::ps_sum(UGeckoInstruction inst)
}
else
{
MOVAPD(XMM1, fpr.R(c));
SHUFPD(XMM1, R(tmp), 2);
tmp = XMM1;
MOVAPD(XMM0, fpr.R(c));
SHUFPD(XMM0, R(tmp), 2);
tmp = XMM0;
}
}
else
@ -68,7 +68,8 @@ void Jit64::ps_sum(UGeckoInstruction inst)
default:
PanicAlert("ps_sum WTF!!!");
}
ForceSinglePrecision(fpr.RX(d), R(tmp));
HandleNaNs(inst, fpr.RX(d), tmp);
ForceSinglePrecision(fpr.RX(d), fpr.R(d));
SetFPRFIfNeeded(fpr.RX(d));
fpr.UnlockAll();
}
@ -88,19 +89,20 @@ void Jit64::ps_muls(UGeckoInstruction inst)
switch (inst.SUBOP5)
{
case 12: // ps_muls0
MOVDDUP(XMM0, fpr.R(c));
MOVDDUP(XMM1, fpr.R(c));
break;
case 13: // ps_muls1
avx_op(&XEmitter::VSHUFPD, &XEmitter::SHUFPD, XMM0, fpr.R(c), fpr.R(c), 3);
avx_op(&XEmitter::VSHUFPD, &XEmitter::SHUFPD, XMM1, fpr.R(c), fpr.R(c), 3);
break;
default:
PanicAlert("ps_muls WTF!!!");
}
if (round_input)
Force25BitPrecision(XMM0, R(XMM0), XMM1);
MULPD(XMM0, fpr.R(a));
Force25BitPrecision(XMM1, R(XMM1), XMM0);
MULPD(XMM1, fpr.R(a));
fpr.BindToRegister(d, false);
ForceSinglePrecision(fpr.RX(d), R(XMM0));
HandleNaNs(inst, fpr.RX(d), XMM1);
ForceSinglePrecision(fpr.RX(d), fpr.R(d));
SetFPRFIfNeeded(fpr.RX(d));
fpr.UnlockAll();
}