Updated SoundTouch library to 1.8.1 [r198]

This commit is contained in:
skidau 2014-09-04 20:41:45 +10:00
parent 7a01effe94
commit ba2bec1c0a
27 changed files with 1417 additions and 698 deletions

View file

@ -12,10 +12,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-01-11 11:34:24 +0000 (Sun, 11 Jan 2009) $
// Last changed : $Date: 2014-01-06 08:40:22 +1100 (Mon, 06 Jan 2014) $
// File revision : $Revision: 4 $
//
// $Id: AAFilter.cpp 45 2009-01-11 11:34:24Z oparviai $
// $Id: AAFilter.cpp 177 2014-01-05 21:40:22Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -52,6 +52,30 @@ using namespace soundtouch;
#define PI 3.141592655357989
#define TWOPI (2 * PI)
// define this to save AA filter coefficients to a file
// #define _DEBUG_SAVE_AAFILTER_COEFFICIENTS 1
#ifdef _DEBUG_SAVE_AAFILTER_COEFFICIENTS
#include <stdio.h>
static void _DEBUG_SAVE_AAFIR_COEFFS(SAMPLETYPE *coeffs, int len)
{
FILE *fptr = fopen("aa_filter_coeffs.txt", "wt");
if (fptr == NULL) return;
for (int i = 0; i < len; i ++)
{
double temp = coeffs[i];
fprintf(fptr, "%lf\n", temp);
}
fclose(fptr);
}
#else
#define _DEBUG_SAVE_AAFIR_COEFFS(x, y)
#endif
/*****************************************************************************
*
* Implementation of the class 'AAFilter'
@ -99,7 +123,7 @@ void AAFilter::calculateCoeffs()
{
uint i;
double cntTemp, temp, tempCoeff,h, w;
double fc2, wc;
double wc;
double scaleCoeff, sum;
double *work;
SAMPLETYPE *coeffs;
@ -112,8 +136,7 @@ void AAFilter::calculateCoeffs()
work = new double[length];
coeffs = new SAMPLETYPE[length];
fc2 = 2.0 * cutoffFreq;
wc = PI * fc2;
wc = 2.0 * PI * cutoffFreq;
tempCoeff = TWOPI / (double)length;
sum = 0;
@ -124,7 +147,7 @@ void AAFilter::calculateCoeffs()
temp = cntTemp * wc;
if (temp != 0)
{
h = fc2 * sin(temp) / temp; // sinc function
h = sin(temp) / temp; // sinc function
}
else
{
@ -153,17 +176,21 @@ void AAFilter::calculateCoeffs()
for (i = 0; i < length; i ++)
{
// scale & round to nearest integer
temp = work[i] * scaleCoeff;
//#if SOUNDTOUCH_INTEGER_SAMPLES
// scale & round to nearest integer
temp += (temp >= 0) ? 0.5 : -0.5;
// ensure no overfloods
assert(temp >= -32768 && temp <= 32767);
//#endif
coeffs[i] = (SAMPLETYPE)temp;
}
// Set coefficients. Use divide factor 14 => divide result by 2^14 = 16384
pFIR->setCoefficients(coeffs, length, 14);
_DEBUG_SAVE_AAFIR_COEFFS(coeffs, length);
delete[] work;
delete[] coeffs;
}
@ -178,6 +205,31 @@ uint AAFilter::evaluate(SAMPLETYPE *dest, const SAMPLETYPE *src, uint numSamples
}
/// Applies the filter to the given src & dest pipes, so that processed amount of
/// samples get removed from src, and produced amount added to dest
/// Note : The amount of outputted samples is by value of 'filter length'
/// smaller than the amount of input samples.
uint AAFilter::evaluate(FIFOSampleBuffer &dest, FIFOSampleBuffer &src) const
{
SAMPLETYPE *pdest;
const SAMPLETYPE *psrc;
uint numSrcSamples;
uint result;
int numChannels = src.getChannels();
assert(numChannels == dest.getChannels());
numSrcSamples = src.numSamples();
psrc = src.ptrBegin();
pdest = dest.ptrEnd(numSrcSamples);
result = pFIR->evaluate(pdest, psrc, numSrcSamples, numChannels);
src.receiveSamples(result);
dest.putSamples(result);
return result;
}
uint AAFilter::getLength() const
{
return pFIR->getLength();

View file

@ -13,10 +13,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2008-02-10 16:26:55 +0000 (Sun, 10 Feb 2008) $
// Last changed : $Date: 2014-01-08 06:41:23 +1100 (Wed, 08 Jan 2014) $
// File revision : $Revision: 4 $
//
// $Id: AAFilter.h 11 2008-02-10 16:26:55Z oparviai $
// $Id: AAFilter.h 187 2014-01-07 19:41:23Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -45,6 +45,7 @@
#define AAFilter_H
#include "STTypes.h"
#include "FIFOSampleBuffer.h"
namespace soundtouch
{
@ -84,6 +85,14 @@ public:
const SAMPLETYPE *src,
uint numSamples,
uint numChannels) const;
/// Applies the filter to the given src & dest pipes, so that processed amount of
/// samples get removed from src, and produced amount added to dest
/// Note : The amount of outputted samples is by value of 'filter length'
/// smaller than the amount of input samples.
uint evaluate(FIFOSampleBuffer &dest,
FIFOSampleBuffer &src) const;
};
}

View file

@ -26,7 +26,7 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2012-08-30 19:45:25 +0000 (Thu, 30 Aug 2012) $
// Last changed : $Date: 2012-08-31 05:45:25 +1000 (Fri, 31 Aug 2012) $
// File revision : $Revision: 4 $
//
// $Id: BPMDetect.cpp 149 2012-08-30 19:45:25Z oparviai $

View file

@ -4,6 +4,9 @@ set(SRCS
cpu_detect_x86.cpp
FIFOSampleBuffer.cpp
FIRFilter.cpp
InterpolateCubic.cpp
InterpolateLinear.cpp
InterpolateShannon.cpp
mmx_optimized.cpp
PeakFinder.cpp
RateTransposer.cpp

View file

@ -15,7 +15,7 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2012-11-08 18:53:01 +0000 (Thu, 08 Nov 2012) $
// Last changed : $Date: 2012-11-09 05:53:01 +1100 (Fri, 09 Nov 2012) $
// File revision : $Revision: 4 $
//
// $Id: FIFOSampleBuffer.cpp 160 2012-11-08 18:53:01Z oparviai $
@ -86,6 +86,10 @@ void FIFOSampleBuffer::setChannels(int numChannels)
samplesInBuffer = usedBytes / channels;
}
int FIFOSampleBuffer::getChannels()
{
return channels;
}
// if output location pointer 'bufferPos' isn't zero, 'rewinds' the buffer and
// zeroes this pointer by copying samples from the 'bufferPos' pointer

View file

@ -161,6 +161,7 @@ public:
/// Sets number of channels, 1 = mono, 2 = stereo.
void setChannels(int numChannels);
int getChannels();
/// Returns nonzero if there aren't any samples available for outputting.
virtual int isEmpty() const;

View file

@ -11,7 +11,7 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2013-06-12 15:24:44 +0000 (Wed, 12 Jun 2013) $
// Last changed : $Date: 2013-06-13 01:24:44 +1000 (Thu, 13 Jun 2013) $
// File revision : $Revision: 4 $
//
// $Id: FIRFilter.cpp 171 2013-06-12 15:24:44Z oparviai $
@ -217,7 +217,6 @@ uint FIRFilter::evaluateFilterMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, uin
sum[c] = 0;
}
}
free(sum);
return numSamples - length;
}

View file

@ -11,7 +11,7 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2013-06-12 15:24:44 +0000 (Wed, 12 Jun 2013) $
// Last changed : $Date: 2013-06-13 01:24:44 +1000 (Thu, 13 Jun 2013) $
// File revision : $Revision: 4 $
//
// $Id: FIRFilter.h 171 2013-06-12 15:24:44Z oparviai $

View file

@ -0,0 +1,200 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Cubic interpolation routine.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// $Id: InterpolateCubic.cpp 179 2014-01-06 18:41:42Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <stddef.h>
#include <math.h>
#include "InterpolateCubic.h"
#include "STTypes.h"
using namespace soundtouch;
// cubic interpolation coefficients
static const float _coeffs[]=
{ -0.5f, 1.0f, -0.5f, 0.0f,
1.5f, -2.5f, 0.0f, 1.0f,
-1.5f, 2.0f, 0.5f, 0.0f,
0.5f, -0.5f, 0.0f, 0.0f};
InterpolateCubic::InterpolateCubic()
{
fract = 0;
}
void InterpolateCubic::resetRegisters()
{
fract = 0;
}
/// Transpose mono audio. Returns number of produced output samples, and
/// updates "srcSamples" to amount of consumed source samples
int InterpolateCubic::transposeMono(SAMPLETYPE *pdest,
const SAMPLETYPE *psrc,
int &srcSamples)
{
int i;
int srcSampleEnd = srcSamples - 4;
int srcCount = 0;
i = 0;
while (srcCount < srcSampleEnd)
{
float out;
const float x3 = 1.0f;
const float x2 = (float)fract; // x
const float x1 = x2*x2; // x^2
const float x0 = x1*x2; // x^3
float y0, y1, y2, y3;
assert(fract < 1.0);
y0 = _coeffs[0] * x0 + _coeffs[1] * x1 + _coeffs[2] * x2 + _coeffs[3] * x3;
y1 = _coeffs[4] * x0 + _coeffs[5] * x1 + _coeffs[6] * x2 + _coeffs[7] * x3;
y2 = _coeffs[8] * x0 + _coeffs[9] * x1 + _coeffs[10] * x2 + _coeffs[11] * x3;
y3 = _coeffs[12] * x0 + _coeffs[13] * x1 + _coeffs[14] * x2 + _coeffs[15] * x3;
out = y0 * psrc[0] + y1 * psrc[1] + y2 * psrc[2] + y3 * psrc[3];
pdest[i] = (SAMPLETYPE)out;
i ++;
// update position fraction
fract += rate;
// update whole positions
int whole = (int)fract;
fract -= whole;
psrc += whole;
srcCount += whole;
}
srcSamples = srcCount;
return i;
}
/// Transpose stereo audio. Returns number of produced output samples, and
/// updates "srcSamples" to amount of consumed source samples
int InterpolateCubic::transposeStereo(SAMPLETYPE *pdest,
const SAMPLETYPE *psrc,
int &srcSamples)
{
int i;
int srcSampleEnd = srcSamples - 4;
int srcCount = 0;
i = 0;
while (srcCount < srcSampleEnd)
{
const float x3 = 1.0f;
const float x2 = (float)fract; // x
const float x1 = x2*x2; // x^2
const float x0 = x1*x2; // x^3
float y0, y1, y2, y3;
float out0, out1;
assert(fract < 1.0);
y0 = _coeffs[0] * x0 + _coeffs[1] * x1 + _coeffs[2] * x2 + _coeffs[3] * x3;
y1 = _coeffs[4] * x0 + _coeffs[5] * x1 + _coeffs[6] * x2 + _coeffs[7] * x3;
y2 = _coeffs[8] * x0 + _coeffs[9] * x1 + _coeffs[10] * x2 + _coeffs[11] * x3;
y3 = _coeffs[12] * x0 + _coeffs[13] * x1 + _coeffs[14] * x2 + _coeffs[15] * x3;
out0 = y0 * psrc[0] + y1 * psrc[2] + y2 * psrc[4] + y3 * psrc[6];
out1 = y0 * psrc[1] + y1 * psrc[3] + y2 * psrc[5] + y3 * psrc[7];
pdest[2*i] = (SAMPLETYPE)out0;
pdest[2*i+1] = (SAMPLETYPE)out1;
i ++;
// update position fraction
fract += rate;
// update whole positions
int whole = (int)fract;
fract -= whole;
psrc += 2*whole;
srcCount += whole;
}
srcSamples = srcCount;
return i;
}
/// Transpose multi-channel audio. Returns number of produced output samples, and
/// updates "srcSamples" to amount of consumed source samples
int InterpolateCubic::transposeMulti(SAMPLETYPE *pdest,
const SAMPLETYPE *psrc,
int &srcSamples)
{
int i;
int srcSampleEnd = srcSamples - 4;
int srcCount = 0;
i = 0;
while (srcCount < srcSampleEnd)
{
const float x3 = 1.0f;
const float x2 = (float)fract; // x
const float x1 = x2*x2; // x^2
const float x0 = x1*x2; // x^3
float y0, y1, y2, y3;
assert(fract < 1.0);
y0 = _coeffs[0] * x0 + _coeffs[1] * x1 + _coeffs[2] * x2 + _coeffs[3] * x3;
y1 = _coeffs[4] * x0 + _coeffs[5] * x1 + _coeffs[6] * x2 + _coeffs[7] * x3;
y2 = _coeffs[8] * x0 + _coeffs[9] * x1 + _coeffs[10] * x2 + _coeffs[11] * x3;
y3 = _coeffs[12] * x0 + _coeffs[13] * x1 + _coeffs[14] * x2 + _coeffs[15] * x3;
for (int c = 0; c < numChannels; c ++)
{
float out;
out = y0 * psrc[c] + y1 * psrc[c + numChannels] + y2 * psrc[c + 2 * numChannels] + y3 * psrc[c + 3 * numChannels];
pdest[0] = (SAMPLETYPE)out;
pdest ++;
}
i ++;
// update position fraction
fract += rate;
// update whole positions
int whole = (int)fract;
fract -= whole;
psrc += numChannels*whole;
srcCount += whole;
}
srcSamples = srcCount;
return i;
}

67
Externals/soundtouch/InterpolateCubic.h vendored Normal file
View file

@ -0,0 +1,67 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Cubic interpolation routine.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// $Id: InterpolateCubic.h 179 2014-01-06 18:41:42Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef _InterpolateCubic_H_
#define _InterpolateCubic_H_
#include "RateTransposer.h"
#include "STTypes.h"
namespace soundtouch
{
class InterpolateCubic : public TransposerBase
{
protected:
virtual void resetRegisters();
virtual int transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples);
virtual int transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples);
virtual int transposeMulti(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples);
float fract;
public:
InterpolateCubic();
};
}
#endif

View file

@ -0,0 +1,299 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Linear interpolation algorithm.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// $Id: InterpolateLinear.cpp 180 2014-01-06 19:16:02Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <assert.h>
#include <stdlib.h>
#include "InterpolateLinear.h"
using namespace soundtouch;
//////////////////////////////////////////////////////////////////////////////
//
// InterpolateLinearInteger - integer arithmetic implementation
//
/// fixed-point interpolation routine precision
#define SCALE 65536
// Constructor
InterpolateLinearInteger::InterpolateLinearInteger() : TransposerBase()
{
// Notice: use local function calling syntax for sake of clarity,
// to indicate the fact that C++ constructor can't call virtual functions.
resetRegisters();
setRate(1.0f);
}
void InterpolateLinearInteger::resetRegisters()
{
iFract = 0;
}
// Transposes the sample rate of the given samples using linear interpolation.
// 'Mono' version of the routine. Returns the number of samples returned in
// the "dest" buffer
int InterpolateLinearInteger::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
{
int i;
int srcSampleEnd = srcSamples - 1;
int srcCount = 0;
i = 0;
while (srcCount < srcSampleEnd)
{
LONG_SAMPLETYPE temp;
assert(iFract < SCALE);
temp = (SCALE - iFract) * src[0] + iFract * src[1];
dest[i] = (SAMPLETYPE)(temp / SCALE);
i++;
iFract += iRate;
int iWhole = iFract / SCALE;
iFract -= iWhole * SCALE;
srcCount += iWhole;
src += iWhole;
}
srcSamples = srcCount;
return i;
}
// Transposes the sample rate of the given samples using linear interpolation.
// 'Stereo' version of the routine. Returns the number of samples returned in
// the "dest" buffer
int InterpolateLinearInteger::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
{
int i;
int srcSampleEnd = srcSamples - 1;
int srcCount = 0;
i = 0;
while (srcCount < srcSampleEnd)
{
LONG_SAMPLETYPE temp0;
LONG_SAMPLETYPE temp1;
assert(iFract < SCALE);
temp0 = (SCALE - iFract) * src[0] + iFract * src[2];
temp1 = (SCALE - iFract) * src[1] + iFract * src[3];
dest[0] = (SAMPLETYPE)(temp0 / SCALE);
dest[1] = (SAMPLETYPE)(temp1 / SCALE);
dest += 2;
i++;
iFract += iRate;
int iWhole = iFract / SCALE;
iFract -= iWhole * SCALE;
srcCount += iWhole;
src += 2*iWhole;
}
srcSamples = srcCount;
return i;
}
int InterpolateLinearInteger::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
{
int i;
int srcSampleEnd = srcSamples - 1;
int srcCount = 0;
i = 0;
while (srcCount < srcSampleEnd)
{
LONG_SAMPLETYPE temp, vol1;
assert(iFract < SCALE);
vol1 = (SCALE - iFract);
for (int c = 0; c < numChannels; c ++)
{
temp = vol1 * src[c] + iFract * src[c + numChannels];
dest[0] = (SAMPLETYPE)(temp / SCALE);
dest ++;
}
i++;
iFract += iRate;
int iWhole = iFract / SCALE;
iFract -= iWhole * SCALE;
srcCount += iWhole;
src += iWhole * numChannels;
}
srcSamples = srcCount;
return i;
}
// Sets new target iRate. Normal iRate = 1.0, smaller values represent slower
// iRate, larger faster iRates.
void InterpolateLinearInteger::setRate(float newRate)
{
iRate = (int)(newRate * SCALE + 0.5f);
TransposerBase::setRate(newRate);
}
//////////////////////////////////////////////////////////////////////////////
//
// InterpolateLinearFloat - floating point arithmetic implementation
//
//////////////////////////////////////////////////////////////////////////////
// Constructor
InterpolateLinearFloat::InterpolateLinearFloat() : TransposerBase()
{
// Notice: use local function calling syntax for sake of clarity,
// to indicate the fact that C++ constructor can't call virtual functions.
resetRegisters();
setRate(1.0f);
}
void InterpolateLinearFloat::resetRegisters()
{
fract = 0;
}
// Transposes the sample rate of the given samples using linear interpolation.
// 'Mono' version of the routine. Returns the number of samples returned in
// the "dest" buffer
int InterpolateLinearFloat::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
{
int i;
int srcSampleEnd = srcSamples - 1;
int srcCount = 0;
i = 0;
while (srcCount < srcSampleEnd)
{
double out;
assert(fract < 1.0);
out = (1.0 - fract) * src[0] + fract * src[1];
dest[i] = (SAMPLETYPE)out;
i ++;
// update position fraction
fract += rate;
// update whole positions
int whole = (int)fract;
fract -= whole;
src += whole;
srcCount += whole;
}
srcSamples = srcCount;
return i;
}
// Transposes the sample rate of the given samples using linear interpolation.
// 'Mono' version of the routine. Returns the number of samples returned in
// the "dest" buffer
int InterpolateLinearFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
{
int i;
int srcSampleEnd = srcSamples - 1;
int srcCount = 0;
i = 0;
while (srcCount < srcSampleEnd)
{
double out0, out1;
assert(fract < 1.0);
out0 = (1.0 - fract) * src[0] + fract * src[2];
out1 = (1.0 - fract) * src[1] + fract * src[3];
dest[2*i] = (SAMPLETYPE)out0;
dest[2*i+1] = (SAMPLETYPE)out1;
i ++;
// update position fraction
fract += rate;
// update whole positions
int whole = (int)fract;
fract -= whole;
src += 2*whole;
srcCount += whole;
}
srcSamples = srcCount;
return i;
}
int InterpolateLinearFloat::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
{
int i;
int srcSampleEnd = srcSamples - 1;
int srcCount = 0;
i = 0;
while (srcCount < srcSampleEnd)
{
float temp, vol1;
vol1 = (1.0f- fract);
for (int c = 0; c < numChannels; c ++)
{
temp = vol1 * src[c] + fract * src[c + numChannels];
*dest = (SAMPLETYPE)temp;
dest ++;
}
i++;
fract += rate;
int iWhole = (int)fract;
fract -= iWhole;
srcCount += iWhole;
src += iWhole * numChannels;
}
srcSamples = srcCount;
return i;
}

View file

@ -0,0 +1,92 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Linear interpolation routine.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// $Id: InterpolateLinear.h 179 2014-01-06 18:41:42Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef _InterpolateLinear_H_
#define _InterpolateLinear_H_
#include "RateTransposer.h"
#include "STTypes.h"
namespace soundtouch
{
/// Linear transposer class that uses integer arithmetics
class InterpolateLinearInteger : public TransposerBase
{
protected:
int iFract;
int iRate;
virtual void resetRegisters();
virtual int transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples);
virtual int transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples);
virtual int transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples);
public:
InterpolateLinearInteger();
/// Sets new target rate. Normal rate = 1.0, smaller values represent slower
/// rate, larger faster rates.
virtual void setRate(float newRate);
};
/// Linear transposer class that uses floating point arithmetics
class InterpolateLinearFloat : public TransposerBase
{
protected:
float fract;
virtual void resetRegisters();
virtual int transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples);
virtual int transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples);
virtual int transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples);
public:
InterpolateLinearFloat();
};
}
#endif

View file

@ -0,0 +1,185 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Sample interpolation routine using 8-tap band-limited Shannon interpolation
/// with kaiser window.
///
/// Notice. This algorithm is remarkably much heavier than linear or cubic
/// interpolation, and not remarkably better than cubic algorithm. Thus mostly
/// for experimental purposes
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// $Id: InterpolateShannon.cpp 195 2014-04-06 15:57:21Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include "InterpolateShannon.h"
#include "STTypes.h"
using namespace soundtouch;
/// Kaiser window with beta = 2.0
/// Values scaled down by 5% to avoid overflows
static const double _kaiser8[8] =
{
0.41778693317814,
0.64888025049173,
0.83508562409944,
0.93887857733412,
0.93887857733412,
0.83508562409944,
0.64888025049173,
0.41778693317814
};
InterpolateShannon::InterpolateShannon()
{
fract = 0;
}
void InterpolateShannon::resetRegisters()
{
fract = 0;
}
#define PI 3.1415926536
#define sinc(x) (sin(PI * (x)) / (PI * (x)))
/// Transpose mono audio. Returns number of produced output samples, and
/// updates "srcSamples" to amount of consumed source samples
int InterpolateShannon::transposeMono(SAMPLETYPE *pdest,
const SAMPLETYPE *psrc,
int &srcSamples)
{
int i;
int srcSampleEnd = srcSamples - 8;
int srcCount = 0;
i = 0;
while (srcCount < srcSampleEnd)
{
double out;
assert(fract < 1.0);
out = psrc[0] * sinc(-3.0 - fract) * _kaiser8[0];
out += psrc[1] * sinc(-2.0 - fract) * _kaiser8[1];
out += psrc[2] * sinc(-1.0 - fract) * _kaiser8[2];
if (fract < 1e-6)
{
out += psrc[3] * _kaiser8[3]; // sinc(0) = 1
}
else
{
out += psrc[3] * sinc(- fract) * _kaiser8[3];
}
out += psrc[4] * sinc( 1.0 - fract) * _kaiser8[4];
out += psrc[5] * sinc( 2.0 - fract) * _kaiser8[5];
out += psrc[6] * sinc( 3.0 - fract) * _kaiser8[6];
out += psrc[7] * sinc( 4.0 - fract) * _kaiser8[7];
pdest[i] = (SAMPLETYPE)out;
i ++;
// update position fraction
fract += rate;
// update whole positions
int whole = (int)fract;
fract -= whole;
psrc += whole;
srcCount += whole;
}
srcSamples = srcCount;
return i;
}
/// Transpose stereo audio. Returns number of produced output samples, and
/// updates "srcSamples" to amount of consumed source samples
int InterpolateShannon::transposeStereo(SAMPLETYPE *pdest,
const SAMPLETYPE *psrc,
int &srcSamples)
{
int i;
int srcSampleEnd = srcSamples - 8;
int srcCount = 0;
i = 0;
while (srcCount < srcSampleEnd)
{
double out0, out1, w;
assert(fract < 1.0);
w = sinc(-3.0 - fract) * _kaiser8[0];
out0 = psrc[0] * w; out1 = psrc[1] * w;
w = sinc(-2.0 - fract) * _kaiser8[1];
out0 += psrc[2] * w; out1 += psrc[3] * w;
w = sinc(-1.0 - fract) * _kaiser8[2];
out0 += psrc[4] * w; out1 += psrc[5] * w;
w = _kaiser8[3] * ((fract < 1e-5) ? 1.0 : sinc(- fract)); // sinc(0) = 1
out0 += psrc[6] * w; out1 += psrc[7] * w;
w = sinc( 1.0 - fract) * _kaiser8[4];
out0 += psrc[8] * w; out1 += psrc[9] * w;
w = sinc( 2.0 - fract) * _kaiser8[5];
out0 += psrc[10] * w; out1 += psrc[11] * w;
w = sinc( 3.0 - fract) * _kaiser8[6];
out0 += psrc[12] * w; out1 += psrc[13] * w;
w = sinc( 4.0 - fract) * _kaiser8[7];
out0 += psrc[14] * w; out1 += psrc[15] * w;
pdest[2*i] = (SAMPLETYPE)out0;
pdest[2*i+1] = (SAMPLETYPE)out1;
i ++;
// update position fraction
fract += rate;
// update whole positions
int whole = (int)fract;
fract -= whole;
psrc += 2*whole;
srcCount += whole;
}
srcSamples = srcCount;
return i;
}
/// Transpose stereo audio. Returns number of produced output samples, and
/// updates "srcSamples" to amount of consumed source samples
int InterpolateShannon::transposeMulti(SAMPLETYPE *pdest,
const SAMPLETYPE *psrc,
int &srcSamples)
{
// not implemented
assert(false);
return 0;
}

View file

@ -0,0 +1,72 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Sample interpolation routine using 8-tap band-limited Shannon interpolation
/// with kaiser window.
///
/// Notice. This algorithm is remarkably much heavier than linear or cubic
/// interpolation, and not remarkably better than cubic algorithm. Thus mostly
/// for experimental purposes
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// $Id: InterpolateShannon.h 179 2014-01-06 18:41:42Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef _InterpolateShannon_H_
#define _InterpolateShannon_H_
#include "RateTransposer.h"
#include "STTypes.h"
namespace soundtouch
{
class InterpolateShannon : public TransposerBase
{
protected:
void resetRegisters();
int transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples);
int transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples);
int transposeMulti(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples);
float fract;
public:
InterpolateShannon();
};
}
#endif

View file

@ -11,7 +11,7 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2012-12-28 19:52:47 +0000 (Fri, 28 Dec 2012) $
// Last changed : $Date: 2012-12-29 06:52:47 +1100 (Sat, 29 Dec 2012) $
// File revision : $Revision: 4 $
//
// $Id: PeakFinder.cpp 164 2012-12-28 19:52:47Z oparviai $

View file

@ -9,7 +9,7 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2011-12-30 20:33:46 +0000 (Fri, 30 Dec 2011) $
// Last changed : $Date: 2011-12-31 07:33:46 +1100 (Sat, 31 Dec 2011) $
// File revision : $Revision: 4 $
//
// $Id: PeakFinder.h 132 2011-12-30 20:33:46Z oparviai $

View file

@ -10,10 +10,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2013-06-14 17:34:33 +0000 (Fri, 14 Jun 2013) $
// Last changed : $Date: 2014-04-07 01:57:21 +1000 (Mon, 07 Apr 2014) $
// File revision : $Revision: 4 $
//
// $Id: RateTransposer.cpp 172 2013-06-14 17:34:33Z oparviai $
// $Id: RateTransposer.cpp 195 2014-04-06 15:57:21Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -43,95 +43,25 @@
#include <stdlib.h>
#include <stdio.h>
#include "RateTransposer.h"
#include "InterpolateLinear.h"
#include "InterpolateCubic.h"
#include "InterpolateShannon.h"
#include "AAFilter.h"
using namespace soundtouch;
/// A linear samplerate transposer class that uses integer arithmetics.
/// for the transposing.
class RateTransposerInteger : public RateTransposer
{
protected:
int iSlopeCount;
int iRate;
SAMPLETYPE *sPrevSample;
virtual void resetRegisters();
virtual int transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples);
virtual int transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples);
virtual int transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, uint numSamples);
public:
RateTransposerInteger();
virtual ~RateTransposerInteger();
/// Sets new target rate. Normal rate = 1.0, smaller values represent slower
/// rate, larger faster rates.
virtual void setRate(float newRate);
};
/// A linear samplerate transposer class that uses floating point arithmetics
/// for the transposing.
class RateTransposerFloat : public RateTransposer
{
protected:
float fSlopeCount;
SAMPLETYPE *sPrevSample;
virtual void resetRegisters();
virtual int transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples);
virtual int transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples);
virtual int transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples);
public:
RateTransposerFloat();
virtual ~RateTransposerFloat();
};
// Operator 'new' is overloaded so that it automatically creates a suitable instance
// depending on if we've a MMX/SSE/etc-capable CPU available or not.
void * RateTransposer::operator new(size_t s)
{
ST_THROW_RT_ERROR("Error in RateTransoser::new: don't use \"new TDStretch\" directly, use \"newInstance\" to create a new instance instead!");
return newInstance();
}
RateTransposer *RateTransposer::newInstance()
{
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
return ::new RateTransposerInteger;
#else
return ::new RateTransposerFloat;
#endif
}
// Define default interpolation algorithm here
TransposerBase::ALGORITHM TransposerBase::algorithm = TransposerBase::CUBIC;
// Constructor
RateTransposer::RateTransposer() : FIFOProcessor(&outputBuffer)
{
numChannels = 2;
bUseAAFilter = TRUE;
fRate = 0;
bUseAAFilter = true;
// Instantiates the anti-alias filter with default tap length
// of 32
pAAFilter = new AAFilter(32);
// Instantiates the anti-alias filter
pAAFilter = new AAFilter(64);
pTransposer = TransposerBase::newInstance();
}
@ -139,19 +69,20 @@ RateTransposer::RateTransposer() : FIFOProcessor(&outputBuffer)
RateTransposer::~RateTransposer()
{
delete pAAFilter;
delete pTransposer;
}
/// Enables/disables the anti-alias filter. Zero to disable, nonzero to enable
void RateTransposer::enableAAFilter(BOOL newMode)
void RateTransposer::enableAAFilter(bool newMode)
{
bUseAAFilter = newMode;
}
/// Returns nonzero if anti-alias filter is enabled.
BOOL RateTransposer::isAAFilterEnabled() const
bool RateTransposer::isAAFilterEnabled() const
{
return bUseAAFilter;
}
@ -170,7 +101,7 @@ void RateTransposer::setRate(float newRate)
{
double fCutoff;
fRate = newRate;
pTransposer->setRate(newRate);
// design a new anti-alias filter
if (newRate > 1.0f)
@ -185,22 +116,6 @@ void RateTransposer::setRate(float newRate)
}
// Outputs as many samples of the 'outputBuffer' as possible, and if there's
// any room left, outputs also as many of the incoming samples as possible.
// The goal is to drive the outputBuffer empty.
//
// It's allowed for 'output' and 'input' parameters to point to the same
// memory position.
/*
void RateTransposer::flushStoreBuffer()
{
if (storeBuffer.isEmpty()) return;
outputBuffer.moveSamples(storeBuffer);
}
*/
// Adds 'nSamples' pcs of samples from the 'samples' memory position into
// the input of the object.
void RateTransposer::putSamples(const SAMPLETYPE *samples, uint nSamples)
@ -209,70 +124,6 @@ void RateTransposer::putSamples(const SAMPLETYPE *samples, uint nSamples)
}
// Transposes up the sample rate, causing the observed playback 'rate' of the
// sound to decrease
void RateTransposer::upsample(const SAMPLETYPE *src, uint nSamples)
{
uint count, sizeTemp, num;
// If the parameter 'uRate' value is smaller than 'SCALE', first transpose
// the samples and then apply the anti-alias filter to remove aliasing.
// First check that there's enough room in 'storeBuffer'
// (+16 is to reserve some slack in the destination buffer)
sizeTemp = (uint)((float)nSamples / fRate + 16.0f);
// Transpose the samples, store the result into the end of "storeBuffer"
count = transpose(storeBuffer.ptrEnd(sizeTemp), src, nSamples);
storeBuffer.putSamples(count);
// Apply the anti-alias filter to samples in "store output", output the
// result to "dest"
num = storeBuffer.numSamples();
count = pAAFilter->evaluate(outputBuffer.ptrEnd(num),
storeBuffer.ptrBegin(), num, (uint)numChannels);
outputBuffer.putSamples(count);
// Remove the processed samples from "storeBuffer"
storeBuffer.receiveSamples(count);
}
// Transposes down the sample rate, causing the observed playback 'rate' of the
// sound to increase
void RateTransposer::downsample(const SAMPLETYPE *src, uint nSamples)
{
uint count, sizeTemp;
// If the parameter 'uRate' value is larger than 'SCALE', first apply the
// anti-alias filter to remove high frequencies (prevent them from folding
// over the lover frequencies), then transpose.
// Add the new samples to the end of the storeBuffer
storeBuffer.putSamples(src, nSamples);
// Anti-alias filter the samples to prevent folding and output the filtered
// data to tempBuffer. Note : because of the FIR filter length, the
// filtering routine takes in 'filter_length' more samples than it outputs.
assert(tempBuffer.isEmpty());
sizeTemp = storeBuffer.numSamples();
count = pAAFilter->evaluate(tempBuffer.ptrEnd(sizeTemp),
storeBuffer.ptrBegin(), sizeTemp, (uint)numChannels);
if (count == 0) return;
// Remove the filtered samples from 'storeBuffer'
storeBuffer.receiveSamples(count);
// Transpose the samples (+16 is to reserve some slack in the destination buffer)
sizeTemp = (uint)((float)nSamples / fRate + 16.0f);
count = transpose(outputBuffer.ptrEnd(sizeTemp), tempBuffer.ptrBegin(), count);
outputBuffer.putSamples(count);
}
// Transposes sample rate by applying anti-alias filter to prevent folding.
// Returns amount of samples returned in the "dest" buffer.
// The maximum amount of samples that can be returned at a time is set by
@ -280,51 +131,45 @@ void RateTransposer::downsample(const SAMPLETYPE *src, uint nSamples)
void RateTransposer::processSamples(const SAMPLETYPE *src, uint nSamples)
{
uint count;
uint sizeReq;
if (nSamples == 0) return;
assert(pAAFilter);
// Store samples to input buffer
inputBuffer.putSamples(src, nSamples);
// If anti-alias filter is turned off, simply transpose without applying
// the filter
if (bUseAAFilter == FALSE)
if (bUseAAFilter == false)
{
sizeReq = (uint)((float)nSamples / fRate + 1.0f);
count = transpose(outputBuffer.ptrEnd(sizeReq), src, nSamples);
outputBuffer.putSamples(count);
count = pTransposer->transpose(outputBuffer, inputBuffer);
return;
}
assert(pAAFilter);
// Transpose with anti-alias filter
if (fRate < 1.0f)
if (pTransposer->rate < 1.0f)
{
upsample(src, nSamples);
// If the parameter 'Rate' value is smaller than 1, first transpose
// the samples and then apply the anti-alias filter to remove aliasing.
// Transpose the samples, store the result to end of "midBuffer"
pTransposer->transpose(midBuffer, inputBuffer);
// Apply the anti-alias filter for transposed samples in midBuffer
pAAFilter->evaluate(outputBuffer, midBuffer);
}
else
{
downsample(src, nSamples);
}
}
// If the parameter 'Rate' value is larger than 1, first apply the
// anti-alias filter to remove high frequencies (prevent them from folding
// over the lover frequencies), then transpose.
// Apply the anti-alias filter for samples in inputBuffer
pAAFilter->evaluate(midBuffer, inputBuffer);
// Transposes the sample rate of the given samples using linear interpolation.
// Returns the number of samples returned in the "dest" buffer
inline int RateTransposer::transpose(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
{
#ifndef USE_MULTICH_ALWAYS
if (numChannels == 1)
{
return transposeMono(dest, src, nSamples);
}
else if (numChannels == 2)
{
return transposeStereo(dest, src, nSamples);
}
else
#endif // USE_MULTICH_ALWAYS
{
assert(numChannels > 0);
return transposeMulti(dest, src, nSamples);
// Transpose the AA-filtered samples in "midBuffer"
pTransposer->transpose(outputBuffer, midBuffer);
}
}
@ -333,17 +178,13 @@ inline int RateTransposer::transpose(SAMPLETYPE *dest, const SAMPLETYPE *src, ui
void RateTransposer::setChannels(int nChannels)
{
assert(nChannels > 0);
if (numChannels == nChannels) return;
// assert(nChannels == 1 || nChannels == 2);
numChannels = nChannels;
if (pTransposer->numChannels == nChannels) return;
pTransposer->setChannels(nChannels);
storeBuffer.setChannels(numChannels);
tempBuffer.setChannels(numChannels);
outputBuffer.setChannels(numChannels);
// Inits the linear interpolation registers
resetRegisters();
inputBuffer.setChannels(nChannels);
midBuffer.setChannels(nChannels);
outputBuffer.setChannels(nChannels);
}
@ -351,7 +192,8 @@ void RateTransposer::setChannels(int nChannels)
void RateTransposer::clear()
{
outputBuffer.clear();
storeBuffer.clear();
midBuffer.clear();
inputBuffer.clear();
}
@ -362,387 +204,99 @@ int RateTransposer::isEmpty() const
res = FIFOProcessor::isEmpty();
if (res == 0) return 0;
return storeBuffer.isEmpty();
return inputBuffer.isEmpty();
}
//////////////////////////////////////////////////////////////////////////////
//
// RateTransposerInteger - integer arithmetic implementation
// TransposerBase - Base class for interpolation
//
/// fixed-point interpolation routine precision
#define SCALE 65536
// Constructor
RateTransposerInteger::RateTransposerInteger() : RateTransposer()
// static function to set interpolation algorithm
void TransposerBase::setAlgorithm(TransposerBase::ALGORITHM a)
{
// Notice: use local function calling syntax for sake of clarity,
// to indicate the fact that C++ constructor can't call virtual functions.
sPrevSample=0;
RateTransposerInteger::resetRegisters();
RateTransposerInteger::setRate(1.0f);
}
RateTransposerInteger::~RateTransposerInteger()
{
if (sPrevSample) delete[] sPrevSample;
}
void RateTransposerInteger::resetRegisters()
{
iSlopeCount = 0;
delete[] sPrevSample;
sPrevSample = new SAMPLETYPE[numChannels];
memset(sPrevSample, 0, numChannels * sizeof(SAMPLETYPE));
}
// Transposes the sample rate of the given samples using linear interpolation.
// 'Mono' version of the routine. Returns the number of samples returned in
// the "dest" buffer
int RateTransposerInteger::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
{
int i, remain;
LONG_SAMPLETYPE temp, vol1;
if (nSamples == 0) return 0; // no samples, no work
remain = nSamples - 1;
i = 0;
// Process the last sample saved from the previous call first...
while (iSlopeCount <= SCALE)
{
vol1 = (LONG_SAMPLETYPE)(SCALE - iSlopeCount);
temp = vol1 * sPrevSample[0] + iSlopeCount * src[0];
dest[i] = (SAMPLETYPE)(temp / SCALE);
i++;
iSlopeCount += iRate;
}
// now always (iSlopeCount > SCALE)
iSlopeCount -= SCALE;
while (1)
{
while (iSlopeCount > SCALE)
{
iSlopeCount -= SCALE;
src ++;
remain --;
if (remain == 0) goto end;
}
vol1 = (LONG_SAMPLETYPE)(SCALE - iSlopeCount);
temp = src[0] * vol1 + iSlopeCount * src[1];
dest[i] = (SAMPLETYPE)(temp / SCALE);
i++;
iSlopeCount += iRate;
}
end:
// Store the last sample for the next round
sPrevSample[0] = src[0];
return i;
TransposerBase::algorithm = a;
}
// Transposes the sample rate of the given samples using linear interpolation.
// 'Stereo' version of the routine. Returns the number of samples returned in
// the "dest" buffer
int RateTransposerInteger::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
// Returns the number of samples returned in the "dest" buffer
int TransposerBase::transpose(FIFOSampleBuffer &dest, FIFOSampleBuffer &src)
{
int i, remain;
LONG_SAMPLETYPE temp, vol1;
int numSrcSamples = src.numSamples();
int sizeDemand = (int)((float)numSrcSamples / rate) + 8;
int numOutput;
SAMPLETYPE *psrc = src.ptrBegin();
SAMPLETYPE *pdest = dest.ptrEnd(sizeDemand);
if (nSamples == 0) return 0; // no samples, no work
remain = nSamples - 1;
i = 0;
// Process the last sample saved from the sPrevSampleLious call first...
while (iSlopeCount <= SCALE)
#ifndef USE_MULTICH_ALWAYS
if (numChannels == 1)
{
vol1 = (LONG_SAMPLETYPE)(SCALE - iSlopeCount);
temp = vol1 * sPrevSample[0] + iSlopeCount * src[0];
dest[2 * i] = (SAMPLETYPE)(temp / SCALE);
temp = vol1 * sPrevSample[1] + iSlopeCount * src[1];
dest[2 * i + 1] = (SAMPLETYPE)(temp / SCALE);
i++;
iSlopeCount += iRate;
numOutput = transposeMono(pdest, psrc, numSrcSamples);
}
// now always (iSlopeCount > SCALE)
iSlopeCount -= SCALE;
while (1)
else if (numChannels == 2)
{
while (iSlopeCount > SCALE)
{
iSlopeCount -= SCALE;
remain --;
src += 2;
if (remain == 0) goto end;
}
vol1 = (LONG_SAMPLETYPE)(SCALE - iSlopeCount);
temp = src[0] * vol1 + iSlopeCount * src[2];
dest[2 * i] = (SAMPLETYPE)(temp / SCALE);
temp = src[1] * vol1 + iSlopeCount * src[3];
dest[2 * i + 1] = (SAMPLETYPE)(temp / SCALE);
i++;
iSlopeCount += iRate;
numOutput = transposeStereo(pdest, psrc, numSrcSamples);
}
else
#endif // USE_MULTICH_ALWAYS
{
assert(numChannels > 0);
numOutput = transposeMulti(pdest, psrc, numSrcSamples);
}
end:
// Store the last sample for the next round
sPrevSample[0] = src[0];
sPrevSample[1] = src[1];
return i;
dest.putSamples(numOutput);
src.receiveSamples(numSrcSamples);
return numOutput;
}
int RateTransposerInteger::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
TransposerBase::TransposerBase()
{
int i, remaining;
LONG_SAMPLETYPE temp, vol1;
if (nSamples == 0) return 0; // no samples, no work
remaining = nSamples - 1;
i = 0;
// Process the last sample saved from the sPrevSampleLious call first...
while (iSlopeCount <= SCALE)
{
for (int c = 0; c < numChannels; c ++)
{
vol1 = (SCALE - iSlopeCount);
temp = vol1 * sPrevSample[c] + iSlopeCount * src[c];
*dest = (SAMPLETYPE)(temp / SCALE);
dest ++;
}
i++;
iSlopeCount += iRate;
}
// now always (iSlopeCount > SCALE)
iSlopeCount -= SCALE;
while (1)
{
while (iSlopeCount > SCALE)
{
iSlopeCount -= SCALE;
src += numChannels;
remaining --;
if (remaining == 0) goto end;
}
for (int c = 0; c < numChannels; c ++)
{
vol1 = (SCALE - iSlopeCount);
temp = src[c] * vol1 + iSlopeCount * src[c + numChannels];
*dest = (SAMPLETYPE)(temp / SCALE);
dest++;
}
i++;
iSlopeCount += iRate;
}
end:
// Store the last sample for the next round
memcpy(sPrevSample, src, numChannels * sizeof(SAMPLETYPE));
return i;
}
// Sets new target iRate. Normal iRate = 1.0, smaller values represent slower
// iRate, larger faster iRates.
void RateTransposerInteger::setRate(float newRate)
{
iRate = (int)(newRate * SCALE + 0.5f);
RateTransposer::setRate(newRate);
numChannels = 0;
rate = 1.0f;
}
//////////////////////////////////////////////////////////////////////////////
//
// RateTransposerFloat - floating point arithmetic implementation
//
//////////////////////////////////////////////////////////////////////////////
// Constructor
RateTransposerFloat::RateTransposerFloat() : RateTransposer()
TransposerBase::~TransposerBase()
{
// Notice: use local function calling syntax for sake of clarity,
// to indicate the fact that C++ constructor can't call virtual functions.
sPrevSample = NULL;
RateTransposerFloat::resetRegisters();
RateTransposerFloat::setRate(1.0f);
}
RateTransposerFloat::~RateTransposerFloat()
void TransposerBase::setChannels(int channels)
{
delete[] sPrevSample;
numChannels = channels;
resetRegisters();
}
void RateTransposerFloat::resetRegisters()
void TransposerBase::setRate(float newRate)
{
fSlopeCount = 0;
delete[] sPrevSample;
sPrevSample = new SAMPLETYPE[numChannels];
memset(sPrevSample, 0, numChannels * sizeof(SAMPLETYPE));
rate = newRate;
}
// Transposes the sample rate of the given samples using linear interpolation.
// 'Mono' version of the routine. Returns the number of samples returned in
// the "dest" buffer
int RateTransposerFloat::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
// static factory function
TransposerBase *TransposerBase::newInstance()
{
int i, remain;
remain = 0;
i = 0;
// Process the last sample saved from the previous call first...
while (fSlopeCount <= 1.0f)
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
// Notice: For integer arithmetics support only linear algorithm (due to simplest calculus)
return ::new InterpolateLinearInteger;
#else
switch (algorithm)
{
dest[i] = (SAMPLETYPE)((1.0f - fSlopeCount) * sPrevSample[0] + fSlopeCount * src[0]);
i++;
fSlopeCount += fRate;
}
fSlopeCount -= 1.0f;
case LINEAR:
return new InterpolateLinearFloat;
if (nSamples > 1)
{
while (1)
{
while (fSlopeCount > 1.0f)
{
fSlopeCount -= 1.0f;
src ++;
remain --;
if (remain == 0) goto end;
}
dest[i] = (SAMPLETYPE)((1.0f - fSlopeCount) * src[0] + fSlopeCount * src[1]);
i++;
fSlopeCount += fRate;
}
}
end:
// Store the last sample for the next round
sPrevSample[0] = src[0];
case CUBIC:
return new InterpolateCubic;
return i;
}
// Transposes the sample rate of the given samples using linear interpolation.
// 'Mono' version of the routine. Returns the number of samples returned in
// the "dest" buffer
int RateTransposerFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
{
int i, remain;
if (nSamples == 0) return 0; // no samples, no work
remain = nSamples - 1;
i = 0;
// Process the last sample saved from the sPrevSampleLious call first...
while (fSlopeCount <= 1.0f)
{
dest[2 * i] = (SAMPLETYPE)((1.0f - fSlopeCount) * sPrevSample[0] + fSlopeCount * src[0]);
dest[2 * i + 1] = (SAMPLETYPE)((1.0f - fSlopeCount) * sPrevSample[1] + fSlopeCount * src[1]);
i++;
fSlopeCount += fRate;
}
// now always (iSlopeCount > 1.0f)
fSlopeCount -= 1.0f;
if (nSamples > 1)
{
while (1)
{
while (fSlopeCount > 1.0f)
{
fSlopeCount -= 1.0f;
remain --;
src += 2;
if (remain == 0) goto end;
}
dest[2 * i] = (SAMPLETYPE)((1.0f - fSlopeCount) * src[0]
+ fSlopeCount * src[2]);
dest[2 * i + 1] = (SAMPLETYPE)((1.0f - fSlopeCount) * src[1]
+ fSlopeCount * src[3]);
i++;
fSlopeCount += fRate;
}
}
end:
// Store the last sample for the next round
sPrevSample[0] = src[0];
sPrevSample[1] = src[1];
return i;
}
int RateTransposerFloat::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
{
int i, remaining;
if (nSamples == 0) return 0; // no samples, no work
remaining = nSamples - 1;
i = 0;
// Process the last sample saved from the sPrevSampleLious call first...
while (fSlopeCount <= 1.0f)
{
for (int c = 0; c < numChannels; c ++)
{
*dest = (SAMPLETYPE)((1.0f - fSlopeCount) * sPrevSample[c] + fSlopeCount * src[c]);
dest ++;
}
i++;
fSlopeCount += fRate;
}
// now always (iSlopeCount > 1.0f)
fSlopeCount -= 1.0f;
while (remaining > 0)
{
while (fSlopeCount > 1.0f)
{
fSlopeCount -= 1.0f;
src += numChannels;
remaining --;
if (remaining == 0) goto end;
}
for (int c = 0; c < numChannels; c ++)
{
*dest = (SAMPLETYPE)((1.0f - fSlopeCount) * src[c]
+ fSlopeCount * src[c + numChannels]);
dest++;
}
i++;
fSlopeCount += fRate;
}
end:
// Store the last sample for the next round
memcpy(sPrevSample, src, numChannels * sizeof(SAMPLETYPE));
return i;
case SHANNON:
return new InterpolateShannon;
default:
assert(false);
return NULL;
}
#endif
}

View file

@ -14,10 +14,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2013-06-12 15:24:44 +0000 (Wed, 12 Jun 2013) $
// Last changed : $Date: 2014-04-07 01:57:21 +1000 (Mon, 07 Apr 2014) $
// File revision : $Revision: 4 $
//
// $Id: RateTransposer.h 171 2013-06-12 15:24:44Z oparviai $
// $Id: RateTransposer.h 195 2014-04-06 15:57:21Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -55,51 +55,71 @@
namespace soundtouch
{
/// Abstract base class for transposer implementations (linear, advanced vs integer, float etc)
class TransposerBase
{
public:
enum ALGORITHM {
LINEAR = 0,
CUBIC,
SHANNON
};
protected:
virtual void resetRegisters() = 0;
virtual int transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples) = 0;
virtual int transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples) = 0;
virtual int transposeMulti(SAMPLETYPE *dest,
const SAMPLETYPE *src,
int &srcSamples) = 0;
static ALGORITHM algorithm;
public:
float rate;
int numChannels;
TransposerBase();
virtual ~TransposerBase();
virtual int transpose(FIFOSampleBuffer &dest, FIFOSampleBuffer &src);
virtual void setRate(float newRate);
virtual void setChannels(int channels);
// static factory function
static TransposerBase *newInstance();
// static function to set interpolation algorithm
static void setAlgorithm(ALGORITHM a);
};
/// A common linear samplerate transposer class.
///
/// Note: Use function "RateTransposer::newInstance()" to create a new class
/// instance instead of the "new" operator; that function automatically
/// chooses a correct implementation depending on if integer or floating
/// arithmetics are to be used.
class RateTransposer : public FIFOProcessor
{
protected:
/// Anti-alias filter object
AAFilter *pAAFilter;
float fRate;
int numChannels;
TransposerBase *pTransposer;
/// Buffer for collecting samples to feed the anti-alias filter between
/// two batches
FIFOSampleBuffer storeBuffer;
FIFOSampleBuffer inputBuffer;
/// Buffer for keeping samples between transposing & anti-alias filter
FIFOSampleBuffer tempBuffer;
FIFOSampleBuffer midBuffer;
/// Output sample buffer
FIFOSampleBuffer outputBuffer;
BOOL bUseAAFilter;
bool bUseAAFilter;
virtual void resetRegisters() = 0;
virtual int transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples) = 0;
virtual int transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples) = 0;
virtual int transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples) = 0;
inline int transpose(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples);
void downsample(const SAMPLETYPE *src,
uint numSamples);
void upsample(const SAMPLETYPE *src,
uint numSamples);
/// Transposes sample rate by applying anti-alias filter to prevent folding.
/// Returns amount of samples returned in the "dest" buffer.
@ -108,34 +128,33 @@ protected:
void processSamples(const SAMPLETYPE *src,
uint numSamples);
public:
RateTransposer();
virtual ~RateTransposer();
/// Operator 'new' is overloaded so that it automatically creates a suitable instance
/// depending on if we're to use integer or floating point arithmetics.
static void *operator new(size_t s);
// static void *operator new(size_t s);
/// Use this function instead of "new" operator to create a new instance of this class.
/// This function automatically chooses a correct implementation, depending on if
/// integer ot floating point arithmetics are to be used.
static RateTransposer *newInstance();
// static RateTransposer *newInstance();
/// Returns the output buffer object
FIFOSamplePipe *getOutput() { return &outputBuffer; };
/// Returns the store buffer object
FIFOSamplePipe *getStore() { return &storeBuffer; };
// FIFOSamplePipe *getStore() { return &storeBuffer; };
/// Return anti-alias filter object
AAFilter *getAAFilter();
/// Enables/disables the anti-alias filter. Zero to disable, nonzero to enable
void enableAAFilter(BOOL newMode);
void enableAAFilter(bool newMode);
/// Returns nonzero if anti-alias filter is enabled.
BOOL isAAFilterEnabled() const;
bool isAAFilterEnabled() const;
/// Sets new target rate. Normal rate = 1.0, smaller values represent slower
/// rate, larger faster rates.

View file

@ -41,10 +41,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2013-06-12 15:24:44 +0000 (Wed, 12 Jun 2013) $
// Last changed : $Date: 2014-04-07 01:57:21 +1000 (Mon, 07 Apr 2014) $
// File revision : $Revision: 4 $
//
// $Id: SoundTouch.cpp 171 2013-06-12 15:24:44Z oparviai $
// $Id: SoundTouch.cpp 195 2014-04-06 15:57:21Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -97,7 +97,7 @@ SoundTouch::SoundTouch()
{
// Initialize rate transposer and tempo changer instances
pRateTransposer = RateTransposer::newInstance();
pRateTransposer = new RateTransposer();
pTDStretch = TDStretch::newInstance();
setOutPipe(pTDStretch);
@ -111,7 +111,7 @@ SoundTouch::SoundTouch()
calcEffectiveRateAndTempo();
channels = 0;
bSrateSet = FALSE;
bSrateSet = false;
}
@ -255,7 +255,7 @@ void SoundTouch::calcEffectiveRateAndTempo()
tempoOut = pTDStretch->getOutput();
tempoOut->moveSamples(*output);
// move samples in pitch transposer's store buffer to tempo changer's input
pTDStretch->moveSamples(*pRateTransposer->getStore());
// deprecated : pTDStretch->moveSamples(*pRateTransposer->getStore());
output = pTDStretch;
}
@ -283,7 +283,7 @@ void SoundTouch::calcEffectiveRateAndTempo()
// Sets sample rate.
void SoundTouch::setSampleRate(uint srate)
{
bSrateSet = TRUE;
bSrateSet = true;
// set sample rate, leave other tempo changer parameters as they are.
pTDStretch->setParameters((int)srate);
}
@ -293,7 +293,7 @@ void SoundTouch::setSampleRate(uint srate)
// the input of the object.
void SoundTouch::putSamples(const SAMPLETYPE *samples, uint nSamples)
{
if (bSrateSet == FALSE)
if (bSrateSet == false)
{
ST_THROW_RT_ERROR("SoundTouch : Sample rate not defined");
}
@ -383,13 +383,12 @@ void SoundTouch::flush()
pTDStretch->clearInput();
// yet leave the 'tempoChanger' output intouched as that's where the
// flushed samples are!
free(buff);
}
// Changes a setting controlling the processing system behaviour. See the
// 'SETTING_...' defines for available setting ID's.
BOOL SoundTouch::setSetting(int settingId, int value)
bool SoundTouch::setSetting(int settingId, int value)
{
int sampleRate, sequenceMs, seekWindowMs, overlapMs;
@ -400,36 +399,36 @@ BOOL SoundTouch::setSetting(int settingId, int value)
{
case SETTING_USE_AA_FILTER :
// enables / disabless anti-alias filter
pRateTransposer->enableAAFilter((value != 0) ? TRUE : FALSE);
return TRUE;
pRateTransposer->enableAAFilter((value != 0) ? true : false);
return true;
case SETTING_AA_FILTER_LENGTH :
// sets anti-alias filter length
pRateTransposer->getAAFilter()->setLength(value);
return TRUE;
return true;
case SETTING_USE_QUICKSEEK :
// enables / disables tempo routine quick seeking algorithm
pTDStretch->enableQuickSeek((value != 0) ? TRUE : FALSE);
return TRUE;
pTDStretch->enableQuickSeek((value != 0) ? true : false);
return true;
case SETTING_SEQUENCE_MS:
// change time-stretch sequence duration parameter
pTDStretch->setParameters(sampleRate, value, seekWindowMs, overlapMs);
return TRUE;
return true;
case SETTING_SEEKWINDOW_MS:
// change time-stretch seek window length parameter
pTDStretch->setParameters(sampleRate, sequenceMs, value, overlapMs);
return TRUE;
return true;
case SETTING_OVERLAP_MS:
// change time-stretch overlap length parameter
pTDStretch->setParameters(sampleRate, sequenceMs, seekWindowMs, value);
return TRUE;
return true;
default :
return FALSE;
return false;
}
}

View file

@ -79,10 +79,10 @@ namespace soundtouch
{
/// Soundtouch library version string
#define SOUNDTOUCH_VERSION "1.7.2 (dev)"
#define SOUNDTOUCH_VERSION "1.8.1 (r198)"
/// SoundTouch library version id
#define SOUNDTOUCH_VERSION_ID (10702)
#define SOUNDTOUCH_VERSION_ID (10801)
//
// Available setting IDs for the 'setSetting' & 'get_setting' functions:
@ -248,7 +248,7 @@ public:
/// 'SETTING_...' defines for available setting ID's.
///
/// \return 'TRUE' if the setting was succesfully changed
BOOL setSetting(int settingId, ///< Setting ID number. see SETTING_... defines.
bool setSetting(int settingId, ///< Setting ID number. see SETTING_... defines.
int value ///< New setting value.
);

View file

@ -48,6 +48,9 @@
<ClCompile Include="cpu_detect_x86.cpp" />
<ClCompile Include="FIFOSampleBuffer.cpp" />
<ClCompile Include="FIRFilter.cpp" />
<ClCompile Include="InterpolateCubic.cpp" />
<ClCompile Include="InterpolateLinear.cpp" />
<ClCompile Include="InterpolateShannon.cpp" />
<ClCompile Include="mmx_optimized.cpp" />
<ClCompile Include="PeakFinder.cpp" />
<ClCompile Include="RateTransposer.cpp" />
@ -62,6 +65,9 @@
<ClInclude Include="FIFOSampleBuffer.h" />
<ClInclude Include="FIFOSamplePipe.h" />
<ClInclude Include="FIRFilter.h" />
<ClInclude Include="InterpolateCubic.h" />
<ClInclude Include="InterpolateLinear.h" />
<ClInclude Include="InterpolateShannon.h" />
<ClInclude Include="PeakFinder.h" />
<ClInclude Include="RateTransposer.h" />
<ClInclude Include="SoundTouch.h" />
@ -74,4 +80,4 @@
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>
</Project>

View file

@ -13,10 +13,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2013-06-14 17:34:33 +0000 (Fri, 14 Jun 2013) $
// Last changed : $Date: 2014-04-07 01:57:21 +1000 (Mon, 07 Apr 2014) $
// File revision : $Revision: 1.12 $
//
// $Id: TDStretch.cpp 172 2013-06-14 17:34:33Z oparviai $
// $Id: TDStretch.cpp 195 2014-04-06 15:57:21Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -84,15 +84,15 @@ static const short _scanOffsets[5][24]={
TDStretch::TDStretch() : FIFOProcessor(&outputBuffer)
{
bQuickSeek = FALSE;
bQuickSeek = false;
channels = 2;
pMidBuffer = NULL;
pMidBufferUnaligned = NULL;
overlapLength = 0;
bAutoSeqSetting = TRUE;
bAutoSeekSetting = TRUE;
bAutoSeqSetting = true;
bAutoSeekSetting = true;
// outDebt = 0;
skipFract = 0;
@ -132,23 +132,23 @@ void TDStretch::setParameters(int aSampleRate, int aSequenceMS,
if (aSequenceMS > 0)
{
this->sequenceMs = aSequenceMS;
bAutoSeqSetting = FALSE;
bAutoSeqSetting = false;
}
else if (aSequenceMS == 0)
{
// if zero, use automatic setting
bAutoSeqSetting = TRUE;
bAutoSeqSetting = true;
}
if (aSeekWindowMS > 0)
{
this->seekWindowMs = aSeekWindowMS;
bAutoSeekSetting = FALSE;
bAutoSeekSetting = false;
}
else if (aSeekWindowMS == 0)
{
// if zero, use automatic setting
bAutoSeekSetting = TRUE;
bAutoSeekSetting = true;
}
calcSeqParameters();
@ -231,14 +231,14 @@ void TDStretch::clear()
// Enables/disables the quick position seeking algorithm. Zero to disable, nonzero
// to enable
void TDStretch::enableQuickSeek(BOOL enable)
void TDStretch::enableQuickSeek(bool enable)
{
bQuickSeek = enable;
}
// Returns nonzero if the quick seeking algorithm is enabled.
BOOL TDStretch::isQuickSeekEnabled() const
bool TDStretch::isQuickSeekEnabled() const
{
return bQuickSeek;
}
@ -293,6 +293,7 @@ int TDStretch::seekBestOverlapPositionFull(const SAMPLETYPE *refPos)
{
int bestOffs;
double bestCorr, corr;
double norm;
int i;
bestCorr = FLT_MIN;
@ -300,11 +301,15 @@ int TDStretch::seekBestOverlapPositionFull(const SAMPLETYPE *refPos)
// Scans for the best correlation value by testing each possible position
// over the permitted range.
for (i = 0; i < seekLength; i ++)
bestCorr = calcCrossCorr(refPos, pMidBuffer, norm);
for (i = 1; i < seekLength; i ++)
{
// Calculates correlation value for the mixing position corresponding
// to 'i'
corr = calcCrossCorr(refPos + channels * i, pMidBuffer);
// to 'i'. Now call "calcCrossCorrAccumulate" that is otherwise same as
// "calcCrossCorr", but saves time by reusing & updating previously stored
// "norm" value
corr = calcCrossCorrAccumulate(refPos + channels * i, pMidBuffer, norm);
// heuristic rule to slightly favour values close to mid of the range
double tmp = (double)(2 * i - seekLength) / (double)seekLength;
corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp));
@ -352,12 +357,13 @@ int TDStretch::seekBestOverlapPositionQuick(const SAMPLETYPE *refPos)
j = 0;
while (_scanOffsets[scanCount][j])
{
double norm;
tempOffset = corrOffset + _scanOffsets[scanCount][j];
if (tempOffset >= seekLength) break;
// Calculates correlation value for the mixing position corresponding
// to 'tempOffset'
corr = (double)calcCrossCorr(refPos + channels * tempOffset, pMidBuffer);
corr = (double)calcCrossCorr(refPos + channels * tempOffset, pMidBuffer, norm);
// heuristic rule to slightly favour values close to mid of the range
double tmp = (double)(2 * tempOffset - seekLength) / seekLength;
corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp));
@ -729,32 +735,72 @@ void TDStretch::calculateOverlapLength(int aoverlapMs)
}
double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare) const
double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare, double &norm) const
{
long corr;
long norm;
long lnorm;
int i;
corr = norm = 0;
corr = lnorm = 0;
// Same routine for stereo and mono. For stereo, unroll loop for better
// efficiency and gives slightly better resolution against rounding.
// For mono it same routine, just unrolls loop by factor of 4
for (i = 0; i < channels * overlapLength; i += 4)
{
corr += (mixingPos[i] * compare[i] +
mixingPos[i + 1] * compare[i + 1] +
mixingPos[i + 2] * compare[i + 2] +
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBits; // notice: do intermediate division here to avoid integer overflow
corr += (mixingPos[i + 2] * compare[i + 2] +
mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBits;
norm += (mixingPos[i] * mixingPos[i] +
mixingPos[i + 1] * mixingPos[i + 1] +
mixingPos[i + 2] * mixingPos[i + 2] +
mixingPos[i + 3] * mixingPos[i + 3]) >> overlapDividerBits;
lnorm += (mixingPos[i] * mixingPos[i] +
mixingPos[i + 1] * mixingPos[i + 1]) >> overlapDividerBits; // notice: do intermediate division here to avoid integer overflow
lnorm += (mixingPos[i + 2] * mixingPos[i + 2] +
mixingPos[i + 3] * mixingPos[i + 3]) >> overlapDividerBits;
}
// Normalize result by dividing by sqrt(norm) - this step is easiest
// done using floating point operation
if (norm == 0) norm = 1; // to avoid div by zero
return (double)corr / sqrt((double)norm);
norm = (double)lnorm;
return (double)corr / sqrt((norm < 1e-9) ? 1.0 : norm);
}
/// Update cross-correlation by accumulating "norm" coefficient by previously calculated value
double TDStretch::calcCrossCorrAccumulate(const short *mixingPos, const short *compare, double &norm) const
{
long corr;
long lnorm;
int i;
// cancel first normalizer tap from previous round
lnorm = 0;
for (i = 1; i <= channels; i ++)
{
lnorm -= (mixingPos[-i] * mixingPos[-i]) >> overlapDividerBits;
}
corr = 0;
// Same routine for stereo and mono. For stereo, unroll loop for better
// efficiency and gives slightly better resolution against rounding.
// For mono it same routine, just unrolls loop by factor of 4
for (i = 0; i < channels * overlapLength; i += 4)
{
corr += (mixingPos[i] * compare[i] +
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBits; // notice: do intermediate division here to avoid integer overflow
corr += (mixingPos[i + 2] * compare[i + 2] +
mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBits;
}
// update normalizer with last samples of this round
for (int j = 0; j < channels; j ++)
{
i --;
lnorm += (mixingPos[i] * mixingPos[i]) >> overlapDividerBits;
}
norm += (double)lnorm;
// Normalize result by dividing by sqrt(norm) - this step is easiest
// done using floating point operation
return (double)corr / sqrt((norm < 1e-9) ? 1.0 : norm);
}
#endif // SOUNDTOUCH_INTEGER_SAMPLES
@ -834,10 +880,10 @@ void TDStretch::calculateOverlapLength(int overlapInMsec)
}
double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare) const
/// Calculate cross-correlation
double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare, double &norm) const
{
double corr;
double norm;
int i;
corr = norm = 0;
@ -859,8 +905,43 @@ double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare) co
mixingPos[i + 3] * mixingPos[i + 3];
}
if (norm < 1e-9) norm = 1.0; // to avoid div by zero
return corr / sqrt(norm);
return corr / sqrt((norm < 1e-9 ? 1.0 : norm));
}
/// Update cross-correlation by accumulating "norm" coefficient by previously calculated value
double TDStretch::calcCrossCorrAccumulate(const float *mixingPos, const float *compare, double &norm) const
{
double corr;
int i;
corr = 0;
// cancel first normalizer tap from previous round
for (i = 1; i <= channels; i ++)
{
norm -= mixingPos[-i] * mixingPos[-i];
}
// Same routine for stereo and mono. For Stereo, unroll by factor of 2.
// For mono it's same routine yet unrollsd by factor of 4.
for (i = 0; i < channels * overlapLength; i += 4)
{
corr += mixingPos[i] * compare[i] +
mixingPos[i + 1] * compare[i + 1] +
mixingPos[i + 2] * compare[i + 2] +
mixingPos[i + 3] * compare[i + 3];
}
// update normalizer with last samples of this round
for (int j = 0; j < channels; j ++)
{
i --;
norm += mixingPos[i] * mixingPos[i];
}
return corr / sqrt((norm < 1e-9 ? 1.0 : norm));
}
#endif // SOUNDTOUCH_FLOAT_SAMPLES

View file

@ -13,10 +13,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2013-06-12 15:24:44 +0000 (Wed, 12 Jun 2013) $
// Last changed : $Date: 2014-04-07 01:57:21 +1000 (Mon, 07 Apr 2014) $
// File revision : $Revision: 4 $
//
// $Id: TDStretch.h 171 2013-06-12 15:24:44Z oparviai $
// $Id: TDStretch.h 195 2014-04-06 15:57:21Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -125,21 +125,22 @@ protected:
float skipFract;
FIFOSampleBuffer outputBuffer;
FIFOSampleBuffer inputBuffer;
BOOL bQuickSeek;
bool bQuickSeek;
int sampleRate;
int sequenceMs;
int seekWindowMs;
int overlapMs;
BOOL bAutoSeqSetting;
BOOL bAutoSeekSetting;
bool bAutoSeqSetting;
bool bAutoSeekSetting;
void acceptNewOverlapLength(int newOverlapLength);
virtual void clearCrossCorrState();
void calculateOverlapLength(int overlapMs);
virtual double calcCrossCorr(const SAMPLETYPE *mixingPos, const SAMPLETYPE *compare) const;
virtual double calcCrossCorr(const SAMPLETYPE *mixingPos, const SAMPLETYPE *compare, double &norm) const;
virtual double calcCrossCorrAccumulate(const SAMPLETYPE *mixingPos, const SAMPLETYPE *compare, double &norm) const;
virtual int seekBestOverlapPositionFull(const SAMPLETYPE *refPos);
virtual int seekBestOverlapPositionQuick(const SAMPLETYPE *refPos);
@ -194,10 +195,10 @@ public:
/// Enables/disables the quick position seeking algorithm. Zero to disable,
/// nonzero to enable
void enableQuickSeek(BOOL enable);
void enableQuickSeek(bool enable);
/// Returns nonzero if the quick seeking algorithm is enabled.
BOOL isQuickSeekEnabled() const;
bool isQuickSeekEnabled() const;
/// Sets routine control parameters. These control are certain time constants
/// defining how the sound is stretched to the desired duration.
@ -248,7 +249,8 @@ public:
class TDStretchMMX : public TDStretch
{
protected:
double calcCrossCorr(const short *mixingPos, const short *compare) const;
double calcCrossCorr(const short *mixingPos, const short *compare, double &norm) const;
double calcCrossCorrAccumulate(const short *mixingPos, const short *compare, double &norm) const;
virtual void overlapStereo(short *output, const short *input) const;
virtual void clearCrossCorrState();
};
@ -260,7 +262,8 @@ public:
class TDStretchSSE : public TDStretch
{
protected:
double calcCrossCorr(const float *mixingPos, const float *compare) const;
double calcCrossCorr(const float *mixingPos, const float *compare, double &norm) const;
double calcCrossCorrAccumulate(const float *mixingPos, const float *compare, double &norm) const;
};
#endif /// SOUNDTOUCH_ALLOW_SSE

View file

@ -12,7 +12,7 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2008-02-10 16:26:55 +0000 (Sun, 10 Feb 2008) $
// Last changed : $Date: 2008-02-11 03:26:55 +1100 (Mon, 11 Feb 2008) $
// File revision : $Revision: 4 $
//
// $Id: cpu_detect.h 11 2008-02-10 16:26:55Z oparviai $

View file

@ -11,10 +11,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2012-11-08 18:44:37 +0000 (Thu, 08 Nov 2012) $
// Last changed : $Date: 2014-01-08 05:24:28 +1100 (Wed, 08 Jan 2014) $
// File revision : $Revision: 4 $
//
// $Id: cpu_detect_x86.cpp 159 2012-11-08 18:44:37Z oparviai $
// $Id: cpu_detect_x86.cpp 183 2014-01-07 18:24:28Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -42,22 +42,20 @@
#include "cpu_detect.h"
#include "STTypes.h"
#if defined(SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS)
#if defined(__GNUC__) && defined(__i386__)
// gcc
#include "cpuid.h"
#elif defined(_M_IX86)
// windows non-gcc
#include <intrin.h>
#endif
#ifndef bit_MMX
#define bit_MMX (1 << 23)
#define bit_MMX (1 << 23)
#define bit_SSE (1 << 25)
#define bit_SSE2 (1 << 26)
#endif
#if defined(__GNUC__) && defined(__i386__)
// gcc
#include "cpuid.h"
#elif defined(_M_IX86)
// windows non-gcc
#include <intrin.h>
#endif
#define bit_MMX (1 << 23)
#define bit_SSE (1 << 25)
#define bit_SSE2 (1 << 26)
#endif

View file

@ -20,10 +20,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2012-11-08 18:53:01 +0000 (Thu, 08 Nov 2012) $
// Last changed : $Date: 2014-01-08 05:25:40 +1100 (Wed, 08 Jan 2014) $
// File revision : $Revision: 4 $
//
// $Id: mmx_optimized.cpp 160 2012-11-08 18:53:01Z oparviai $
// $Id: mmx_optimized.cpp 184 2014-01-07 18:25:40Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -68,7 +68,7 @@ using namespace soundtouch;
// Calculates cross correlation of two buffers
double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2) const
double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2, double &dnorm) const
{
const __m64 *pVec1, *pVec2;
__m64 shifter;
@ -93,19 +93,19 @@ double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2) const
// _mm_add_pi32 : 2*32bit add
// _m_psrad : 32bit right-shift
temp = _mm_add_pi32(_mm_madd_pi16(pVec1[0], pVec2[0]),
_mm_madd_pi16(pVec1[1], pVec2[1]));
temp2 = _mm_add_pi32(_mm_madd_pi16(pVec1[0], pVec1[0]),
_mm_madd_pi16(pVec1[1], pVec1[1]));
accu = _mm_add_pi32(accu, _mm_sra_pi32(temp, shifter));
normaccu = _mm_add_pi32(normaccu, _mm_sra_pi32(temp2, shifter));
temp = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[0], pVec2[0]), shifter),
_mm_sra_pi32(_mm_madd_pi16(pVec1[1], pVec2[1]), shifter));
temp2 = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[0], pVec1[0]), shifter),
_mm_sra_pi32(_mm_madd_pi16(pVec1[1], pVec1[1]), shifter));
accu = _mm_add_pi32(accu, temp);
normaccu = _mm_add_pi32(normaccu, temp2);
temp = _mm_add_pi32(_mm_madd_pi16(pVec1[2], pVec2[2]),
_mm_madd_pi16(pVec1[3], pVec2[3]));
temp2 = _mm_add_pi32(_mm_madd_pi16(pVec1[2], pVec1[2]),
_mm_madd_pi16(pVec1[3], pVec1[3]));
accu = _mm_add_pi32(accu, _mm_sra_pi32(temp, shifter));
normaccu = _mm_add_pi32(normaccu, _mm_sra_pi32(temp2, shifter));
temp = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[2], pVec2[2]), shifter),
_mm_sra_pi32(_mm_madd_pi16(pVec1[3], pVec2[3]), shifter));
temp2 = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[2], pVec1[2]), shifter),
_mm_sra_pi32(_mm_madd_pi16(pVec1[3], pVec1[3]), shifter));
accu = _mm_add_pi32(accu, temp);
normaccu = _mm_add_pi32(normaccu, temp2);
pVec1 += 4;
pVec2 += 4;
@ -125,14 +125,81 @@ double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2) const
// Normalize result by dividing by sqrt(norm) - this step is easiest
// done using floating point operation
if (norm == 0) norm = 1; // to avoid div by zero
dnorm = (double)norm;
return (double)corr / sqrt((double)norm);
return (double)corr / sqrt(dnorm < 1e-9 ? 1.0 : dnorm);
// Note: Warning about the missing EMMS instruction is harmless
// as it'll be called elsewhere.
}
/// Update cross-correlation by accumulating "norm" coefficient by previously calculated value
double TDStretchMMX::calcCrossCorrAccumulate(const short *pV1, const short *pV2, double &dnorm) const
{
const __m64 *pVec1, *pVec2;
__m64 shifter;
__m64 accu;
long corr, lnorm;
int i;
// cancel first normalizer tap from previous round
lnorm = 0;
for (i = 1; i <= channels; i ++)
{
lnorm -= (pV1[-i] * pV1[-i]) >> overlapDividerBits;
}
pVec1 = (__m64*)pV1;
pVec2 = (__m64*)pV2;
shifter = _m_from_int(overlapDividerBits);
accu = _mm_setzero_si64();
// Process 4 parallel sets of 2 * stereo samples or 4 * mono samples
// during each round for improved CPU-level parallellization.
for (i = 0; i < channels * overlapLength / 16; i ++)
{
__m64 temp;
// dictionary of instructions:
// _m_pmaddwd : 4*16bit multiply-add, resulting two 32bits = [a0*b0+a1*b1 ; a2*b2+a3*b3]
// _mm_add_pi32 : 2*32bit add
// _m_psrad : 32bit right-shift
temp = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[0], pVec2[0]), shifter),
_mm_sra_pi32(_mm_madd_pi16(pVec1[1], pVec2[1]), shifter));
accu = _mm_add_pi32(accu, temp);
temp = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[2], pVec2[2]), shifter),
_mm_sra_pi32(_mm_madd_pi16(pVec1[3], pVec2[3]), shifter));
accu = _mm_add_pi32(accu, temp);
pVec1 += 4;
pVec2 += 4;
}
// copy hi-dword of mm0 to lo-dword of mm1, then sum mmo+mm1
// and finally store the result into the variable "corr"
accu = _mm_add_pi32(accu, _mm_srli_si64(accu, 32));
corr = _m_to_int(accu);
// Clear MMS state
_m_empty();
// update normalizer with last samples of this round
pV1 = (short *)pVec1;
for (int j = 1; j <= channels; j ++)
{
lnorm += (pV1[-j] * pV1[-j]) >> overlapDividerBits;
}
dnorm += (double)lnorm;
// Normalize result by dividing by sqrt(norm) - this step is easiest
// done using floating point operation
return (double)corr / sqrt((dnorm < 1e-9) ? 1.0 : dnorm);
}
void TDStretchMMX::clearCrossCorrState()
{

View file

@ -23,10 +23,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2012-11-08 18:53:01 +0000 (Thu, 08 Nov 2012) $
// Last changed : $Date: 2014-01-08 05:25:40 +1100 (Wed, 08 Jan 2014) $
// File revision : $Revision: 4 $
//
// $Id: sse_optimized.cpp 160 2012-11-08 18:53:01Z oparviai $
// $Id: sse_optimized.cpp 184 2014-01-07 18:25:40Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -71,7 +71,7 @@ using namespace soundtouch;
#include <math.h>
// Calculates cross correlation of two buffers
double TDStretchSSE::calcCrossCorr(const float *pV1, const float *pV2) const
double TDStretchSSE::calcCrossCorr(const float *pV1, const float *pV2, double &norm) const
{
int i;
const float *pVec1;
@ -141,11 +141,10 @@ double TDStretchSSE::calcCrossCorr(const float *pV1, const float *pV2) const
// return value = vSum[0] + vSum[1] + vSum[2] + vSum[3]
float *pvNorm = (float*)&vNorm;
double norm = sqrt(pvNorm[0] + pvNorm[1] + pvNorm[2] + pvNorm[3]);
if (norm < 1e-9) norm = 1.0; // to avoid div by zero
norm = (pvNorm[0] + pvNorm[1] + pvNorm[2] + pvNorm[3]);
float *pvSum = (float*)&vSum;
return (double)(pvSum[0] + pvSum[1] + pvSum[2] + pvSum[3]) / norm;
return (double)(pvSum[0] + pvSum[1] + pvSum[2] + pvSum[3]) / sqrt(norm < 1e-9 ? 1.0 : norm);
/* This is approximately corresponding routine in C-language yet without normalization:
double corr, norm;
@ -182,6 +181,16 @@ double TDStretchSSE::calcCrossCorr(const float *pV1, const float *pV2) const
}
double TDStretchSSE::calcCrossCorrAccumulate(const float *pV1, const float *pV2, double &norm) const
{
// call usual calcCrossCorr function because SSE does not show big benefit of
// accumulating "norm" value, and also the "norm" rolling algorithm would get
// complicated due to SSE-specific alignment-vs-nonexact correlation rules.
return calcCrossCorr(pV1, pV2, norm);
}
//////////////////////////////////////////////////////////////////////////////
//
// implementation of SSE optimized functions of class 'FIRFilter'