Revert "DSP: ARAM cleanup experiments"

This commit is contained in:
JMC47 2019-09-02 01:47:50 -04:00 committed by GitHub
parent 03ea0eb27a
commit c144cde825
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 126 additions and 143 deletions

View file

@ -24,7 +24,6 @@
#include "Core/HW/DSP.h"
#include <algorithm>
#include <memory>
#include "AudioCommon/AudioCommon.h"
@ -34,7 +33,7 @@
#include "Core/ConfigManager.h"
#include "Core/CoreTiming.h"
#include "Core/DSPEmulator.h"
#include "Core/HW/AddressSpace.h"
#include "Core/HW/MMIO.h"
#include "Core/HW/Memmap.h"
#include "Core/HW/ProcessorInterface.h"
@ -120,22 +119,12 @@ union ARAM_Info
u16 Hex = 0;
struct
{
u16 base_size : 3;
u16 expansion_size : 3;
u16 size : 6;
u16 unk : 1;
u16 : 9;
};
};
enum
{
ARAM_SIZE_02MB = 0b000,
ARAM_SIZE_04MB = 0b001,
ARAM_SIZE_08MB = 0b010,
ARAM_SIZE_16MB = 0b011,
ARAM_SIZE_32MB = 0b100,
};
// STATE_TO_SAVE
static ARAMInfo s_ARAM;
static AudioDMA s_audioDMA;
@ -176,19 +165,12 @@ static void Do_ARAM_DMA();
static void GenerateDSPInterrupt(u64 DSPIntType, s64 cyclesLate = 0);
static CoreTiming::EventType* s_et_GenerateDSPInterrupt;
static CoreTiming::EventType* s_et_ContinueARAM;
static CoreTiming::EventType* s_et_CompleteARAM;
static void ContinueARAM(u64 userdata, s64 cyclesLate)
static void CompleteARAM(u64 userdata, s64 cyclesLate)
{
if (s_arDMA.Cnt.count == 0)
{
s_dspState.DMAState = 0;
GenerateDSPInterrupt(INT_ARAM);
}
else
{
Do_ARAM_DMA();
}
s_dspState.DMAState = 0;
GenerateDSPInterrupt(INT_ARAM);
}
DSPEmulator* GetDSPEmulator()
@ -200,7 +182,7 @@ void Init(bool hle)
{
Reinit(hle);
s_et_GenerateDSPInterrupt = CoreTiming::RegisterEvent("DSPint", GenerateDSPInterrupt);
s_et_ContinueARAM = CoreTiming::RegisterEvent("ARAMint", ContinueARAM);
s_et_CompleteARAM = CoreTiming::RegisterEvent("ARAMint", CompleteARAM);
}
void Reinit(bool hle)
@ -211,9 +193,9 @@ void Reinit(bool hle)
if (SConfig::GetInstance().bWii)
{
s_ARAM.wii_mode = true;
s_ARAM.size = 0;
s_ARAM.mask = 0;
s_ARAM.ptr = nullptr;
s_ARAM.size = Memory::EXRAM_SIZE;
s_ARAM.mask = Memory::EXRAM_MASK;
s_ARAM.ptr = Memory::m_pEXRAM;
}
else
{
@ -318,7 +300,7 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
// Not really sure if this is correct, but it works...
// Kind of a hack because DSP_CONTROL_MASK should make this bit
// only viewable to DSP emulator
if (val & 1) // DSPReset
if (val & 1 /*DSPReset*/)
{
s_audioDMA.AudioDMAControl.Hex = 0;
}
@ -490,128 +472,135 @@ void UpdateAudioDMA()
}
}
static constexpr u32 ARAM_MEMORY_WRAP_MASK = 0x3ffffe0;
// Used when converting from a smaller memory size to 16MB
static constexpr u32 ARAM_UPPER_MASK1 = 0xfffffe00;
static constexpr u32 ARAM_LOWER_MASK1 = 0x000001ff;
// Used when converting from a larger memory size to 16MB
static constexpr u32 ARAM_UPPER_MASK2 = 0xff800000;
static constexpr u32 ARAM_LOWER_MASK2 = 0x003fffff;
// Depending on the size ARAM is configured as, the mapping to the underlying physical ARAM can
// change. These mappings have been confirmed on hardware.
template <u32 MB_SIZE>
static std::optional<u32> ARAM_map_to_16MB(u32 address)
static void Do_ARAM_DMA()
{
static_assert((MB_SIZE == 2) || (MB_SIZE == 4) || (MB_SIZE == 8) || (MB_SIZE == 16) ||
(MB_SIZE == 32));
s_dspState.DMAState = 1;
address &= ARAM_MEMORY_WRAP_MASK;
if (address >= MB_SIZE * 1024 * 1024)
// ARAM DMA transfer rate has been measured on real hw
int ticksToTransfer = (s_arDMA.Cnt.count / 32) * 246;
CoreTiming::ScheduleEvent(ticksToTransfer, s_et_CompleteARAM);
// Real hardware DMAs in 32byte chunks, but we can get by with 8byte chunks
if (s_arDMA.Cnt.dir)
{
return std::nullopt;
}
if constexpr (MB_SIZE < 16)
{
return ((address & ARAM_UPPER_MASK1) << 1) | (address & ARAM_LOWER_MASK1);
}
else if constexpr (MB_SIZE > 16)
{
return ((address & ARAM_UPPER_MASK2) >> 1) | (address & ARAM_LOWER_MASK2);
// ARAM -> MRAM
DEBUG_LOG(DSPINTERFACE, "DMA %08x bytes from ARAM %08x to MRAM %08x PC: %08x",
s_arDMA.Cnt.count, s_arDMA.ARAddr, s_arDMA.MMAddr, PC);
// Outgoing data from ARAM is mirrored every 64MB (verified on real HW)
s_arDMA.ARAddr &= 0x3ffffff;
s_arDMA.MMAddr &= 0x3ffffff;
if (s_arDMA.ARAddr < s_ARAM.size)
{
while (s_arDMA.Cnt.count)
{
// These are logically separated in code to show that a memory map has been set up
// See below in the write section for more information
if ((s_ARAM_Info.Hex & 0xf) == 3)
{
Memory::Write_U64_Swap(*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask], s_arDMA.MMAddr);
}
else if ((s_ARAM_Info.Hex & 0xf) == 4)
{
Memory::Write_U64_Swap(*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask], s_arDMA.MMAddr);
}
else
{
Memory::Write_U64_Swap(*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask], s_arDMA.MMAddr);
}
s_arDMA.MMAddr += 8;
s_arDMA.ARAddr += 8;
s_arDMA.Cnt.count -= 8;
}
}
else
{
// Assuming no external ARAM installed; returns zeros on out of bounds reads (verified on real
// HW)
while (s_arDMA.Cnt.count)
{
Memory::Write_U64(0, s_arDMA.MMAddr);
s_arDMA.MMAddr += 8;
s_arDMA.ARAddr += 8;
s_arDMA.Cnt.count -= 8;
}
}
}
else
{
return address;
// MRAM -> ARAM
DEBUG_LOG(DSPINTERFACE, "DMA %08x bytes from MRAM %08x to ARAM %08x PC: %08x",
s_arDMA.Cnt.count, s_arDMA.MMAddr, s_arDMA.ARAddr, PC);
// Incoming data into ARAM is mirrored every 64MB (verified on real HW)
s_arDMA.ARAddr &= 0x3ffffff;
s_arDMA.MMAddr &= 0x3ffffff;
if (s_arDMA.ARAddr < s_ARAM.size)
{
while (s_arDMA.Cnt.count)
{
if ((s_ARAM_Info.Hex & 0xf) == 3)
{
*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask] =
Common::swap64(Memory::Read_U64(s_arDMA.MMAddr));
}
else if ((s_ARAM_Info.Hex & 0xf) == 4)
{
if (s_arDMA.ARAddr < 0x400000)
{
*(u64*)&s_ARAM.ptr[(s_arDMA.ARAddr + 0x400000) & s_ARAM.mask] =
Common::swap64(Memory::Read_U64(s_arDMA.MMAddr));
}
*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask] =
Common::swap64(Memory::Read_U64(s_arDMA.MMAddr));
}
else
{
*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask] =
Common::swap64(Memory::Read_U64(s_arDMA.MMAddr));
}
s_arDMA.MMAddr += 8;
s_arDMA.ARAddr += 8;
s_arDMA.Cnt.count -= 8;
}
}
else
{
// Assuming no external ARAM installed; writes nothing to ARAM when out of bounds (verified on
// real HW)
s_arDMA.MMAddr += s_arDMA.Cnt.count;
s_arDMA.ARAddr += s_arDMA.Cnt.count;
s_arDMA.Cnt.count = 0;
}
}
}
using ARAM_ADDRESS_CONVERSION_F = std::optional<u32> (*)(u32 address);
constexpr std::array<ARAM_ADDRESS_CONVERSION_F, 8> conversion_functions = {
&ARAM_map_to_16MB<2>, &ARAM_map_to_16MB<4>, &ARAM_map_to_16MB<8>, &ARAM_map_to_16MB<16>,
&ARAM_map_to_16MB<32>, &ARAM_map_to_16MB<32>, &ARAM_map_to_16MB<32>, &ARAM_map_to_16MB<32>,
};
enum
{
ARAM_DMA_DIR_TO_ARAM = 0,
ARAM_DMA_DIR_FROM_ARAM = 1,
};
// Size of the smallest unit of transfer to/from ARAM via DMA.
constexpr u32 ARAM_LINE_SIZE = 0x20;
// Maximum number of lines to transfer at a time via DMA.
constexpr u32 ARAM_MAX_TRANSFER_CHUNKING = 0x10;
// The number of clock ticks for each line to be transferred.
constexpr u32 TICKS_TO_TRANSFER_LINE = 246;
static void Do_ARAM_DMA()
{
constexpr std::array<const char*, 2> aram_transfer_direction = {"to", "from"};
s_dspState.DMAState = 1;
// ARAM is mirrored every 64MB (verified on real HW) - done in address conversion func
// Source/destination/count aligned to 32 bytes - done in MMIO handler
u32 lines_to_transfer = std::min(s_arDMA.Cnt.count / ARAM_LINE_SIZE, ARAM_MAX_TRANSFER_CHUNKING);
u32 ticks_to_transfer = lines_to_transfer * TICKS_TO_TRANSFER_LINE;
CoreTiming::ScheduleEvent(ticks_to_transfer, s_et_ContinueARAM);
DEBUG_LOG(DSPINTERFACE, "DMA %08x bytes %s ARAM %08x %s MRAM %08x PC: %08x", s_arDMA.Cnt.count,
aram_transfer_direction[s_arDMA.Cnt.dir], s_arDMA.ARAddr,
aram_transfer_direction[1 - s_arDMA.Cnt.dir], s_arDMA.MMAddr, PC);
if (s_ARAM.wii_mode)
{
// Wii has no physical ARAM
if (s_arDMA.Cnt.dir == ARAM_DMA_DIR_FROM_ARAM)
{
std::fill_n(Memory::GetPointer(s_arDMA.MMAddr), ARAM_LINE_SIZE * lines_to_transfer, 0);
}
s_arDMA.MMAddr += ARAM_LINE_SIZE * lines_to_transfer;
s_arDMA.ARAddr += ARAM_LINE_SIZE * lines_to_transfer;
s_arDMA.Cnt.count -= ARAM_LINE_SIZE * lines_to_transfer;
return;
}
const ARAM_ADDRESS_CONVERSION_F convert_address = conversion_functions[s_ARAM_Info.base_size];
for (u32 n = 0; n < lines_to_transfer; ++n)
{
std::optional<u32> physical_aram_addr = convert_address(s_arDMA.ARAddr);
if (physical_aram_addr)
{
u8* copy_pointers[2] = {Memory::GetPointer(s_arDMA.MMAddr), &s_ARAM.ptr[*physical_aram_addr]};
std::copy_n(copy_pointers[s_arDMA.Cnt.dir], ARAM_LINE_SIZE,
copy_pointers[1 - s_arDMA.Cnt.dir]);
}
else if (s_arDMA.Cnt.dir == ARAM_DMA_DIR_FROM_ARAM)
{
// ARAM returns zeros on out of bounds reads (verified on real HW)
// ARAM writes nothing on out of bounds writes (verified on real HW)
std::fill_n(Memory::GetPointer(s_arDMA.MMAddr), ARAM_LINE_SIZE, 0);
}
s_arDMA.MMAddr += ARAM_LINE_SIZE;
s_arDMA.ARAddr += ARAM_LINE_SIZE;
}
s_arDMA.Cnt.count -= ARAM_LINE_SIZE * lines_to_transfer;
} // namespace DSP
// (shuffle2) I still don't believe that this hack is actually needed... :(
// Maybe the Wii Sports ucode is processed incorrectly?
// (LM) It just means that DSP reads via '0xffdd' on Wii can end up in EXRAM or main RAM
u8 ReadARAM(u32 address)
{
AddressSpace::Accessors* accessors = AddressSpace::GetAccessors(
s_ARAM.wii_mode ? AddressSpace::Type::Physical : AddressSpace::Type::Auxiliary);
return accessors->ReadU8(address);
if (s_ARAM.wii_mode)
{
if (address & 0x10000000)
return s_ARAM.ptr[address & s_ARAM.mask];
else
return Memory::Read_U8(address & Memory::RAM_MASK);
}
else
{
return s_ARAM.ptr[address & s_ARAM.mask];
}
}
void WriteARAM(u8 value, u32 address)
{
AddressSpace::Accessors* accessors = AddressSpace::GetAccessors(
s_ARAM.wii_mode ? AddressSpace::Type::Physical : AddressSpace::Type::Auxiliary);
accessors->WriteU8(address, value);
// TODO: verify this on Wii
s_ARAM.ptr[address & s_ARAM.mask] = value;
}
u8* GetARAMPtr()
@ -619,9 +608,4 @@ u8* GetARAMPtr()
return s_ARAM.ptr;
}
u32 GetARAMPhysicalSize()
{
return s_ARAM.size;
}
} // end of namespace DSP

View file

@ -26,8 +26,7 @@ enum DSPInterruptType
enum
{
ARAM_SIZE = 0x01000000, // 16 MB
// ARAM_SIZE is always a power-of-two, so (ARAM_SIZE-1) is the mask
ARAM_MASK = ARAM_SIZE - 1,
ARAM_MASK = 0x00FFFFFF,
};
// UDSPControl