Merge pull request #11301 from AdmiralCurtiss/globals-coretiming

CoreTiming: Move variables to Core::System.
This commit is contained in:
Mai 2022-11-26 06:50:47 +00:00 committed by GitHub
commit ed84917eb3
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 217 additions and 106 deletions

View file

@ -50,38 +50,46 @@ static bool operator<(const Event& left, const Event& right)
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
}
// unordered_map stores each element separately as a linked list node so pointers to elements
// remain stable regardless of rehashes/resizing.
static std::unordered_map<std::string, EventType> s_event_types;
// STATE_TO_SAVE
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated
// by the standard adaptor class.
static std::vector<Event> s_event_queue;
static u64 s_event_fifo_id;
static std::mutex s_ts_write_lock;
static Common::SPSCQueue<Event, false> s_ts_queue;
static float s_last_OC_factor;
static constexpr int MAX_SLICE_LENGTH = 20000;
static s64 s_idled_cycles;
static u32 s_fake_dec_start_value;
static u64 s_fake_dec_start_ticks;
struct CoreTimingState::Data
{
// unordered_map stores each element separately as a linked list node so pointers to elements
// remain stable regardless of rehashes/resizing.
std::unordered_map<std::string, EventType> event_types;
// Are we in a function that has been called from Advance()
static bool s_is_global_timer_sane;
// STATE_TO_SAVE
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated
// by the standard adaptor class.
std::vector<Event> event_queue;
u64 event_fifo_id;
std::mutex ts_write_lock;
Common::SPSCQueue<Event, false> ts_queue;
Globals g;
float last_oc_factor;
static EventType* s_ev_lost = nullptr;
s64 idled_cycles;
u32 fake_dec_start_value;
u64 fake_dec_start_ticks;
static size_t s_registered_config_callback_id;
static float s_config_OC_factor;
static float s_config_OC_inv_factor;
static bool s_config_sync_on_skip_idle;
// Are we in a function that has been called from Advance()
bool is_global_timer_sane;
EventType* ev_lost = nullptr;
size_t registered_config_callback_id;
float config_oc_factor;
float config_oc_inv_factor;
bool config_sync_on_skip_idle;
};
CoreTimingState::CoreTimingState() : m_data(std::make_unique<Data>())
{
}
CoreTimingState::~CoreTimingState() = default;
static void EmptyTimedCallback(Core::System& system, u64 userdata, s64 cyclesLate)
{
@ -94,26 +102,28 @@ static void EmptyTimedCallback(Core::System& system, u64 userdata, s64 cyclesLat
//
// Technically it might be more accurate to call this changing the IPC instead of the CPU speed,
// but the effect is largely the same.
static int DowncountToCycles(int downcount)
static int DowncountToCycles(CoreTiming::Globals& g, int downcount)
{
return static_cast<int>(downcount * g.last_OC_factor_inverted);
}
static int CyclesToDowncount(int cycles)
static int CyclesToDowncount(CoreTiming::CoreTimingState::Data& state, int cycles)
{
return static_cast<int>(cycles * s_last_OC_factor);
return static_cast<int>(cycles * state.last_oc_factor);
}
EventType* RegisterEvent(const std::string& name, TimedCallback callback)
{
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
// check for existing type with same name.
// we want event type names to remain unique so that we can use them for serialization.
ASSERT_MSG(POWERPC, s_event_types.find(name) == s_event_types.end(),
ASSERT_MSG(POWERPC, state.event_types.find(name) == state.event_types.end(),
"CoreTiming Event \"{}\" is already registered. Events should only be registered "
"during Init to avoid breaking save states.",
name);
auto info = s_event_types.emplace(name, EventType{callback, nullptr});
auto info = state.event_types.emplace(name, EventType{callback, nullptr});
EventType* event_type = &info.first->second;
event_type->name = &info.first->first;
return event_type;
@ -121,68 +131,80 @@ EventType* RegisterEvent(const std::string& name, TimedCallback callback)
void UnregisterAllEvents()
{
ASSERT_MSG(POWERPC, s_event_queue.empty(), "Cannot unregister events with events pending");
s_event_types.clear();
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
ASSERT_MSG(POWERPC, state.event_queue.empty(), "Cannot unregister events with events pending");
state.event_types.clear();
}
void Init()
{
s_registered_config_callback_id =
auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals();
state.registered_config_callback_id =
Config::AddConfigChangedCallback([]() { Core::RunAsCPUThread([]() { RefreshConfig(); }); });
RefreshConfig();
s_last_OC_factor = s_config_OC_factor;
g.last_OC_factor_inverted = s_config_OC_inv_factor;
PowerPC::ppcState.downcount = CyclesToDowncount(MAX_SLICE_LENGTH);
state.last_oc_factor = state.config_oc_factor;
g.last_OC_factor_inverted = state.config_oc_inv_factor;
PowerPC::ppcState.downcount = CyclesToDowncount(state, MAX_SLICE_LENGTH);
g.slice_length = MAX_SLICE_LENGTH;
g.global_timer = 0;
s_idled_cycles = 0;
state.idled_cycles = 0;
// The time between CoreTiming being intialized and the first call to Advance() is considered
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
// executing the first PPC cycle of each slice to prepare the slice length and downcount for
// that slice.
s_is_global_timer_sane = true;
state.is_global_timer_sane = true;
s_event_fifo_id = 0;
s_ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback);
state.event_fifo_id = 0;
state.ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback);
}
void Shutdown()
{
std::lock_guard lk(s_ts_write_lock);
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
std::lock_guard lk(state.ts_write_lock);
MoveEvents();
ClearPendingEvents();
UnregisterAllEvents();
Config::RemoveConfigChangedCallback(s_registered_config_callback_id);
Config::RemoveConfigChangedCallback(state.registered_config_callback_id);
}
void RefreshConfig()
{
s_config_OC_factor =
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
state.config_oc_factor =
Config::Get(Config::MAIN_OVERCLOCK_ENABLE) ? Config::Get(Config::MAIN_OVERCLOCK) : 1.0f;
s_config_OC_inv_factor = 1.0f / s_config_OC_factor;
s_config_sync_on_skip_idle = Config::Get(Config::MAIN_SYNC_ON_SKIP_IDLE);
state.config_oc_inv_factor = 1.0f / state.config_oc_factor;
state.config_sync_on_skip_idle = Config::Get(Config::MAIN_SYNC_ON_SKIP_IDLE);
}
void DoState(PointerWrap& p)
{
std::lock_guard lk(s_ts_write_lock);
auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals();
std::lock_guard lk(state.ts_write_lock);
p.Do(g.slice_length);
p.Do(g.global_timer);
p.Do(s_idled_cycles);
p.Do(s_fake_dec_start_value);
p.Do(s_fake_dec_start_ticks);
p.Do(state.idled_cycles);
p.Do(state.fake_dec_start_value);
p.Do(state.fake_dec_start_ticks);
p.Do(g.fake_TB_start_value);
p.Do(g.fake_TB_start_ticks);
p.Do(s_last_OC_factor);
g.last_OC_factor_inverted = 1.0f / s_last_OC_factor;
p.Do(s_event_fifo_id);
p.Do(state.last_oc_factor);
g.last_OC_factor_inverted = 1.0f / state.last_oc_factor;
p.Do(state.event_fifo_id);
p.DoMarker("CoreTimingData");
MoveEvents();
p.DoEachElement(s_event_queue, [](PointerWrap& pw, Event& ev) {
p.DoEachElement(state.event_queue, [&state](PointerWrap& pw, Event& ev) {
pw.Do(ev.time);
pw.Do(ev.fifo_order);
@ -199,8 +221,8 @@ void DoState(PointerWrap& p)
pw.Do(name);
if (pw.IsReadMode())
{
auto itr = s_event_types.find(name);
if (itr != s_event_types.end())
auto itr = state.event_types.find(name);
if (itr != state.event_types.end())
{
ev.type = &itr->second;
}
@ -209,7 +231,7 @@ void DoState(PointerWrap& p)
WARN_LOG_FMT(POWERPC,
"Lost event from savestate because its type, \"{}\", has not been registered.",
name);
ev.type = s_ev_lost;
ev.type = state.ev_lost;
}
}
});
@ -219,17 +241,21 @@ void DoState(PointerWrap& p)
// The exact layout of the heap in memory is implementation defined, therefore it is platform
// and library version specific.
if (p.IsReadMode())
std::make_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
std::make_heap(state.event_queue.begin(), state.event_queue.end(), std::greater<Event>());
}
// This should only be called from the CPU thread. If you are calling
// it from any other thread, you are doing something evil
u64 GetTicks()
{
auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals();
u64 ticks = static_cast<u64>(g.global_timer);
if (!s_is_global_timer_sane)
if (!state.is_global_timer_sane)
{
int downcount = DowncountToCycles(PowerPC::ppcState.downcount);
int downcount = DowncountToCycles(g, PowerPC::ppcState.downcount);
ticks += g.slice_length - downcount;
}
return ticks;
@ -237,18 +263,24 @@ u64 GetTicks()
u64 GetIdleTicks()
{
return static_cast<u64>(s_idled_cycles);
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
return static_cast<u64>(state.idled_cycles);
}
void ClearPendingEvents()
{
s_event_queue.clear();
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
state.event_queue.clear();
}
void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata, FromThread from)
{
ASSERT_MSG(POWERPC, event_type, "Event type is nullptr, will crash now.");
auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals();
bool from_cpu_thread;
if (from == FromThread::ANY)
{
@ -267,11 +299,11 @@ void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata,
s64 timeout = GetTicks() + cycles_into_future;
// If this event needs to be scheduled before the next advance(), force one early
if (!s_is_global_timer_sane)
if (!state.is_global_timer_sane)
ForceExceptionCheck(cycles_into_future);
s_event_queue.emplace_back(Event{timeout, s_event_fifo_id++, userdata, event_type});
std::push_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
state.event_queue.emplace_back(Event{timeout, state.event_fifo_id++, userdata, event_type});
std::push_heap(state.event_queue.begin(), state.event_queue.end(), std::greater<Event>());
}
else
{
@ -283,21 +315,23 @@ void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata,
*event_type->name);
}
std::lock_guard lk(s_ts_write_lock);
s_ts_queue.Push(Event{g.global_timer + cycles_into_future, 0, userdata, event_type});
std::lock_guard lk(state.ts_write_lock);
state.ts_queue.Push(Event{g.global_timer + cycles_into_future, 0, userdata, event_type});
}
}
void RemoveEvent(EventType* event_type)
{
auto itr = std::remove_if(s_event_queue.begin(), s_event_queue.end(),
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
auto itr = std::remove_if(state.event_queue.begin(), state.event_queue.end(),
[&](const Event& e) { return e.type == event_type; });
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != s_event_queue.end())
if (itr != state.event_queue.end())
{
s_event_queue.erase(itr, s_event_queue.end());
std::make_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
state.event_queue.erase(itr, state.event_queue.end());
std::make_heap(state.event_queue.begin(), state.event_queue.end(), std::greater<Event>());
}
}
@ -309,56 +343,65 @@ void RemoveAllEvents(EventType* event_type)
void ForceExceptionCheck(s64 cycles)
{
auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals();
cycles = std::max<s64>(0, cycles);
if (DowncountToCycles(PowerPC::ppcState.downcount) > cycles)
if (DowncountToCycles(g, PowerPC::ppcState.downcount) > cycles)
{
// downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int here.
// Account for cycles already executed by adjusting the g.slice_length
g.slice_length -= DowncountToCycles(PowerPC::ppcState.downcount) - static_cast<int>(cycles);
PowerPC::ppcState.downcount = CyclesToDowncount(static_cast<int>(cycles));
g.slice_length -= DowncountToCycles(g, PowerPC::ppcState.downcount) - static_cast<int>(cycles);
PowerPC::ppcState.downcount = CyclesToDowncount(state, static_cast<int>(cycles));
}
}
void MoveEvents()
{
for (Event ev; s_ts_queue.Pop(ev);)
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
for (Event ev; state.ts_queue.Pop(ev);)
{
ev.fifo_order = s_event_fifo_id++;
s_event_queue.emplace_back(std::move(ev));
std::push_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
ev.fifo_order = state.event_fifo_id++;
state.event_queue.emplace_back(std::move(ev));
std::push_heap(state.event_queue.begin(), state.event_queue.end(), std::greater<Event>());
}
}
void Advance()
{
auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals();
MoveEvents();
int cyclesExecuted = g.slice_length - DowncountToCycles(PowerPC::ppcState.downcount);
int cyclesExecuted = g.slice_length - DowncountToCycles(g, PowerPC::ppcState.downcount);
g.global_timer += cyclesExecuted;
s_last_OC_factor = s_config_OC_factor;
g.last_OC_factor_inverted = s_config_OC_inv_factor;
state.last_oc_factor = state.config_oc_factor;
g.last_OC_factor_inverted = state.config_oc_inv_factor;
g.slice_length = MAX_SLICE_LENGTH;
s_is_global_timer_sane = true;
state.is_global_timer_sane = true;
while (!s_event_queue.empty() && s_event_queue.front().time <= g.global_timer)
while (!state.event_queue.empty() && state.event_queue.front().time <= g.global_timer)
{
Event evt = std::move(s_event_queue.front());
std::pop_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
s_event_queue.pop_back();
evt.type->callback(Core::System::GetInstance(), evt.userdata, g.global_timer - evt.time);
Event evt = std::move(state.event_queue.front());
std::pop_heap(state.event_queue.begin(), state.event_queue.end(), std::greater<Event>());
state.event_queue.pop_back();
evt.type->callback(system, evt.userdata, g.global_timer - evt.time);
}
s_is_global_timer_sane = false;
state.is_global_timer_sane = false;
// Still events left (scheduled in the future)
if (!s_event_queue.empty())
if (!state.event_queue.empty())
{
g.slice_length = static_cast<int>(
std::min<s64>(s_event_queue.front().time - g.global_timer, MAX_SLICE_LENGTH));
std::min<s64>(state.event_queue.front().time - g.global_timer, MAX_SLICE_LENGTH));
}
PowerPC::ppcState.downcount = CyclesToDowncount(g.slice_length);
PowerPC::ppcState.downcount = CyclesToDowncount(state, g.slice_length);
// Check for any external exceptions.
// It's important to do this after processing events otherwise any exceptions will be delayed
@ -369,7 +412,11 @@ void Advance()
void LogPendingEvents()
{
auto clone = s_event_queue;
auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals();
auto clone = state.event_queue;
std::sort(clone.begin(), clone.end());
for (const Event& ev : clone)
{
@ -381,7 +428,11 @@ void LogPendingEvents()
// Should only be called from the CPU thread after the PPC clock has changed
void AdjustEventQueueTimes(u32 new_ppc_clock, u32 old_ppc_clock)
{
for (Event& ev : s_event_queue)
auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals();
for (Event& ev : state.event_queue)
{
const s64 ticks = (ev.time - g.global_timer) * new_ppc_clock / old_ppc_clock;
ev.time = g.global_timer + ticks;
@ -390,7 +441,11 @@ void AdjustEventQueueTimes(u32 new_ppc_clock, u32 old_ppc_clock)
void Idle()
{
if (s_config_sync_on_skip_idle)
auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals();
if (state.config_sync_on_skip_idle)
{
// When the FIFO is processing data we must not advance because in this way
// the VI will be desynchronized. So, We are waiting until the FIFO finish and
@ -399,16 +454,18 @@ void Idle()
}
PowerPC::UpdatePerformanceMonitor(PowerPC::ppcState.downcount, 0, 0);
s_idled_cycles += DowncountToCycles(PowerPC::ppcState.downcount);
state.idled_cycles += DowncountToCycles(g, PowerPC::ppcState.downcount);
PowerPC::ppcState.downcount = 0;
}
std::string GetScheduledEventsSummary()
{
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
std::string text = "Scheduled events\n";
text.reserve(1000);
auto clone = s_event_queue;
auto clone = state.event_queue;
std::sort(clone.begin(), clone.end());
for (const Event& ev : clone)
{
@ -419,41 +476,49 @@ std::string GetScheduledEventsSummary()
u32 GetFakeDecStartValue()
{
return s_fake_dec_start_value;
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
return state.fake_dec_start_value;
}
void SetFakeDecStartValue(u32 val)
{
s_fake_dec_start_value = val;
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
state.fake_dec_start_value = val;
}
u64 GetFakeDecStartTicks()
{
return s_fake_dec_start_ticks;
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
return state.fake_dec_start_ticks;
}
void SetFakeDecStartTicks(u64 val)
{
s_fake_dec_start_ticks = val;
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
state.fake_dec_start_ticks = val;
}
u64 GetFakeTBStartValue()
{
auto& g = Core::System::GetInstance().GetCoreTimingGlobals();
return g.fake_TB_start_value;
}
void SetFakeTBStartValue(u64 val)
{
auto& g = Core::System::GetInstance().GetCoreTimingGlobals();
g.fake_TB_start_value = val;
}
u64 GetFakeTBStartTicks()
{
auto& g = Core::System::GetInstance().GetCoreTimingGlobals();
return g.fake_TB_start_ticks;
}
void SetFakeTBStartTicks(u64 val)
{
auto& g = Core::System::GetInstance().GetCoreTimingGlobals();
g.fake_TB_start_ticks = val;
}

View file

@ -16,7 +16,9 @@
// inside callback:
// ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
#include <memory>
#include <string>
#include "Common/CommonTypes.h"
class PointerWrap;
@ -28,6 +30,23 @@ class System;
namespace CoreTiming
{
class CoreTimingState
{
public:
CoreTimingState();
CoreTimingState(const CoreTimingState&) = delete;
CoreTimingState(CoreTimingState&&) = delete;
CoreTimingState& operator=(const CoreTimingState&) = delete;
CoreTimingState& operator=(CoreTimingState&&) = delete;
~CoreTimingState();
struct Data;
Data& GetData() { return *m_data; }
private:
std::unique_ptr<Data> m_data;
};
// These really shouldn't be global, but jit64 accesses them directly
struct Globals
{
@ -37,7 +56,6 @@ struct Globals
u64 fake_TB_start_ticks;
float last_OC_factor_inverted;
};
extern Globals g;
// CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is
// required to end slice -1 and start slice 0 before the first cycle of code is executed.

View file

@ -212,13 +212,15 @@ int Interpreter::SingleStepInner()
void Interpreter::SingleStep()
{
auto& core_timing_globals = Core::System::GetInstance().GetCoreTimingGlobals();
// Declare start of new slice
CoreTiming::Advance();
SingleStepInner();
// The interpreter ignores instruction timing information outside the 'fast runloop'.
CoreTiming::g.slice_length = 1;
core_timing_globals.slice_length = 1;
PowerPC::ppcState.downcount = 0;
if (PowerPC::ppcState.Exceptions != 0)

View file

@ -14,6 +14,7 @@
#include "Core/PowerPC/Jit64/RegCache/JitRegCache.h"
#include "Core/PowerPC/Jit64Common/Jit64PowerPCState.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
using namespace Gen;
@ -322,7 +323,8 @@ void Jit64::mfspr(UGeckoInstruction inst)
RCX64Reg rax = gpr.Scratch(RAX);
RCX64Reg rcx = gpr.Scratch(RCX);
MOV(64, rcx, ImmPtr(&CoreTiming::g));
auto& core_timing_globals = Core::System::GetInstance().GetCoreTimingGlobals();
MOV(64, rcx, ImmPtr(&core_timing_globals));
// An inline implementation of CoreTiming::GetFakeTimeBase, since in timer-heavy games the
// cost of calling out to C for this is actually significant.

View file

@ -13,6 +13,7 @@
#include "Core/PowerPC/Interpreter/ExceptionUtils.h"
#include "Core/PowerPC/PPCTables.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
using namespace Arm64Gen;
@ -306,7 +307,8 @@ void JitArm64::mfspr(UGeckoInstruction inst)
// An inline implementation of CoreTiming::GetFakeTimeBase, since in timer-heavy games the
// cost of calling out to C for this is actually significant.
MOVP2R(Xg, &CoreTiming::g);
auto& core_timing_globals = Core::System::GetInstance().GetCoreTimingGlobals();
MOVP2R(Xg, &core_timing_globals);
LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(downcount));
m_float_emit.SCVTF(SC, WA);

View file

@ -7,6 +7,7 @@
#include "AudioCommon/SoundStream.h"
#include "Core/Config/MainSettings.h"
#include "Core/CoreTiming.h"
#include "Core/HW/AudioInterface.h"
#include "Core/HW/DSP.h"
#include "Core/HW/DVD/DVDInterface.h"
@ -26,6 +27,8 @@ struct System::Impl
bool m_audio_dump_started = false;
AudioInterface::AudioInterfaceState m_audio_interface_state;
CoreTiming::CoreTimingState m_core_timing_state;
CoreTiming::Globals m_core_timing_globals;
DSP::DSPState m_dsp_state;
DVDInterface::DVDInterfaceState m_dvd_interface_state;
DVDThread::DVDThreadState m_dvd_thread_state;
@ -84,6 +87,16 @@ AudioInterface::AudioInterfaceState& System::GetAudioInterfaceState() const
return m_impl->m_audio_interface_state;
}
CoreTiming::CoreTimingState& System::GetCoreTimingState() const
{
return m_impl->m_core_timing_state;
}
CoreTiming::Globals& System::GetCoreTimingGlobals() const
{
return m_impl->m_core_timing_globals;
}
DSP::DSPState& System::GetDSPState() const
{
return m_impl->m_dsp_state;

View file

@ -12,6 +12,11 @@ namespace AudioInterface
{
class AudioInterfaceState;
};
namespace CoreTiming
{
class CoreTimingState;
struct Globals;
} // namespace CoreTiming
namespace DSP
{
class DSPState;
@ -76,6 +81,8 @@ public:
void SetAudioDumpStarted(bool started);
AudioInterface::AudioInterfaceState& GetAudioInterfaceState() const;
CoreTiming::CoreTimingState& GetCoreTimingState() const;
CoreTiming::Globals& GetCoreTimingGlobals() const;
DSP::DSPState& GetDSPState() const;
DVDInterface::DVDInterfaceState& GetDVDInterfaceState() const;
DVDThread::DVDThreadState& GetDVDThreadState() const;

View file

@ -14,6 +14,7 @@
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
#include "UICommon/UICommon.h"
// Numbers are chosen randomly to make sure the correct one is given.
@ -279,9 +280,10 @@ TEST(CoreTiming, ScheduleIntoPast)
// the stale value, i.e. effectively half-way through the previous slice.
// NOTE: We're only testing that the scheduler doesn't break, not whether this makes sense.
Core::UndeclareAsCPUThread();
CoreTiming::g.global_timer -= 1000;
auto& core_timing_globals = Core::System::GetInstance().GetCoreTimingGlobals();
core_timing_globals.global_timer -= 1000;
CoreTiming::ScheduleEvent(0, cb_b, CB_IDS[1], CoreTiming::FromThread::NON_CPU);
CoreTiming::g.global_timer += 1000;
core_timing_globals.global_timer += 1000;
Core::DeclareAsCPUThread();
AdvanceAndCheck(1, MAX_SLICE_LENGTH, MAX_SLICE_LENGTH + 1000);