// Copyright 2019 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoBackends/D3D12/StreamBuffer.h" #include #include #include "Common/Align.h" #include "Common/Assert.h" #include "Common/MsgHandler.h" #include "VideoBackends/D3D12/DXContext.h" namespace DX12 { StreamBuffer::StreamBuffer() = default; StreamBuffer::~StreamBuffer() { if (m_host_pointer) { const D3D12_RANGE written_range = {0, m_size}; m_buffer->Unmap(0, &written_range); } // These get destroyed at shutdown anyway, so no need to defer destruction. if (m_buffer) m_buffer->Release(); } bool StreamBuffer::AllocateBuffer(u32 size) { static const D3D12_HEAP_PROPERTIES heap_properties = {D3D12_HEAP_TYPE_UPLOAD}; const D3D12_RESOURCE_DESC resource_desc = {D3D12_RESOURCE_DIMENSION_BUFFER, 0, size, 1, 1, 1, DXGI_FORMAT_UNKNOWN, {1, 0}, D3D12_TEXTURE_LAYOUT_ROW_MAJOR, D3D12_RESOURCE_FLAG_NONE}; HRESULT hr = g_dx_context->GetDevice()->CreateCommittedResource( &heap_properties, D3D12_HEAP_FLAG_NONE, &resource_desc, D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&m_buffer)); CHECK(SUCCEEDED(hr), "Allocate buffer"); if (FAILED(hr)) return false; static const D3D12_RANGE read_range = {}; hr = m_buffer->Map(0, &read_range, reinterpret_cast(&m_host_pointer)); CHECK(SUCCEEDED(hr), "Map buffer"); if (FAILED(hr)) return false; m_size = size; m_gpu_pointer = m_buffer->GetGPUVirtualAddress(); m_current_offset = 0; m_current_gpu_position = 0; m_tracked_fences.clear(); return true; } bool StreamBuffer::ReserveMemory(u32 num_bytes, u32 alignment) { const u32 required_bytes = num_bytes + alignment; // Check for sane allocations if (required_bytes > m_size) { PanicAlert("Attempting to allocate %u bytes from a %u byte stream buffer", static_cast(num_bytes), static_cast(m_size)); return false; } // Is the GPU behind or up to date with our current offset? UpdateCurrentFencePosition(); if (m_current_offset >= m_current_gpu_position) { const u32 remaining_bytes = m_size - m_current_offset; if (required_bytes <= remaining_bytes) { // Place at the current position, after the GPU position. m_current_offset = Common::AlignUp(m_current_offset, alignment); m_last_allocation_size = num_bytes; return true; } // Check for space at the start of the buffer // We use < here because we don't want to have the case of m_current_offset == // m_current_gpu_position. That would mean the code above would assume the // GPU has caught up to us, which it hasn't. if (required_bytes < m_current_gpu_position) { // Reset offset to zero, since we're allocating behind the gpu now m_current_offset = 0; m_last_allocation_size = num_bytes; return true; } } else { // We have from m_current_offset..m_current_gpu_position space to use. const u32 remaining_bytes = m_current_gpu_position - m_current_offset; if (required_bytes < remaining_bytes) { // Place at the current position, since this is still behind the GPU. m_current_offset = Common::AlignUp(m_current_offset, alignment); m_last_allocation_size = num_bytes; return true; } } // Can we find a fence to wait on that will give us enough memory? if (WaitForClearSpace(required_bytes)) { m_current_offset = Common::AlignUp(m_current_offset, alignment); m_last_allocation_size = num_bytes; return true; } // We tried everything we could, and still couldn't get anything. This means that too much space // in the buffer is being used by the command buffer currently being recorded. Therefore, the // only option is to execute it, and wait until it's done. return false; } void StreamBuffer::CommitMemory(u32 final_num_bytes) { ASSERT((m_current_offset + final_num_bytes) <= m_size); ASSERT(final_num_bytes <= m_last_allocation_size); m_current_offset += final_num_bytes; } void StreamBuffer::UpdateCurrentFencePosition() { // Don't create a tracking entry if the GPU is caught up with the buffer. if (m_current_offset == m_current_gpu_position) return; // Has the offset changed since the last fence? const u64 fence = g_dx_context->GetCurrentFenceValue(); if (!m_tracked_fences.empty() && m_tracked_fences.back().first == fence) { // Still haven't executed a command buffer, so just update the offset. m_tracked_fences.back().second = m_current_offset; return; } UpdateGPUPosition(); m_tracked_fences.emplace_back(fence, m_current_offset); } void StreamBuffer::UpdateGPUPosition() { auto start = m_tracked_fences.begin(); auto end = start; const u64 completed_counter = g_dx_context->GetCompletedFenceValue(); while (end != m_tracked_fences.end() && completed_counter >= end->first) { m_current_gpu_position = end->second; ++end; } if (start != end) m_tracked_fences.erase(start, end); } bool StreamBuffer::WaitForClearSpace(u32 num_bytes) { u32 new_offset = 0; u32 new_gpu_position = 0; auto iter = m_tracked_fences.begin(); for (; iter != m_tracked_fences.end(); ++iter) { // Would this fence bring us in line with the GPU? // This is the "last resort" case, where a command buffer execution has been forced // after no additional data has been written to it, so we can assume that after the // fence has been signaled the entire buffer is now consumed. u32 gpu_position = iter->second; if (m_current_offset == gpu_position) { new_offset = 0; new_gpu_position = 0; break; } // Assuming that we wait for this fence, are we allocating in front of the GPU? if (m_current_offset > gpu_position) { // This would suggest the GPU has now followed us and wrapped around, so we have from // m_current_position..m_size free, as well as and 0..gpu_position. const u32 remaining_space_after_offset = m_size - m_current_offset; if (remaining_space_after_offset >= num_bytes) { // Switch to allocating in front of the GPU, using the remainder of the buffer. new_offset = m_current_offset; new_gpu_position = gpu_position; break; } // We can wrap around to the start, behind the GPU, if there is enough space. // We use > here because otherwise we'd end up lining up with the GPU, and then the // allocator would assume that the GPU has consumed what we just wrote. if (gpu_position > num_bytes) { new_offset = 0; new_gpu_position = gpu_position; break; } } else { // We're currently allocating behind the GPU. This would give us between the current // offset and the GPU position worth of space to work with. Again, > because we can't // align the GPU position with the buffer offset. u32 available_space_inbetween = gpu_position - m_current_offset; if (available_space_inbetween > num_bytes) { // Leave the offset as-is, but update the GPU position. new_offset = m_current_offset; new_gpu_position = gpu_position; break; } } } // Did any fences satisfy this condition? // Has the command buffer been executed yet? If not, the caller should execute it. if (iter == m_tracked_fences.end() || iter->first == g_dx_context->GetCurrentFenceValue()) return false; // Wait until this fence is signaled. This will fire the callback, updating the GPU position. g_dx_context->WaitForFence(iter->first); m_tracked_fences.erase(m_tracked_fences.begin(), m_current_offset == iter->second ? m_tracked_fences.end() : ++iter); m_current_offset = new_offset; m_current_gpu_position = new_gpu_position; return true; } } // namespace DX12