// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include #include #include #ifdef __APPLE__ #include #endif #include "LightingShaderGen.h" #include "PixelShaderGen.h" #include "XFMemory.h" // for texture projection mode #include "BPMemory.h" #include "VideoConfig.h" #include "NativeVertexFormat.h" // old tev->pixelshader notes // // color for this stage (alpha, color) is given by bpmem.tevorders[0].colorchan0 // konstant for this stage (alpha, color) is given by bpmem.tevksel // inputs are given by bpmem.combiners[0].colorC.a/b/c/d << could be current channel color // according to GXTevColorArg table above // output is given by .outreg // tevtemp is set according to swapmodetables and static const char *tevKSelTableC[] = // KCSEL { "1.0f,1.0f,1.0f", // 1 = 0x00 "0.875f,0.875f,0.875f", // 7_8 = 0x01 "0.75f,0.75f,0.75f", // 3_4 = 0x02 "0.625f,0.625f,0.625f", // 5_8 = 0x03 "0.5f,0.5f,0.5f", // 1_2 = 0x04 "0.375f,0.375f,0.375f", // 3_8 = 0x05 "0.25f,0.25f,0.25f", // 1_4 = 0x06 "0.125f,0.125f,0.125f", // 1_8 = 0x07 "ERROR1", // 0x08 "ERROR2", // 0x09 "ERROR3", // 0x0a "ERROR4", // 0x0b I_KCOLORS"[0].rgb", // K0 = 0x0C I_KCOLORS"[1].rgb", // K1 = 0x0D I_KCOLORS"[2].rgb", // K2 = 0x0E I_KCOLORS"[3].rgb", // K3 = 0x0F I_KCOLORS"[0].rrr", // K0_R = 0x10 I_KCOLORS"[1].rrr", // K1_R = 0x11 I_KCOLORS"[2].rrr", // K2_R = 0x12 I_KCOLORS"[3].rrr", // K3_R = 0x13 I_KCOLORS"[0].ggg", // K0_G = 0x14 I_KCOLORS"[1].ggg", // K1_G = 0x15 I_KCOLORS"[2].ggg", // K2_G = 0x16 I_KCOLORS"[3].ggg", // K3_G = 0x17 I_KCOLORS"[0].bbb", // K0_B = 0x18 I_KCOLORS"[1].bbb", // K1_B = 0x19 I_KCOLORS"[2].bbb", // K2_B = 0x1A I_KCOLORS"[3].bbb", // K3_B = 0x1B I_KCOLORS"[0].aaa", // K0_A = 0x1C I_KCOLORS"[1].aaa", // K1_A = 0x1D I_KCOLORS"[2].aaa", // K2_A = 0x1E I_KCOLORS"[3].aaa", // K3_A = 0x1F }; static const char *tevKSelTableA[] = // KASEL { "1.0f", // 1 = 0x00 "0.875f",// 7_8 = 0x01 "0.75f", // 3_4 = 0x02 "0.625f",// 5_8 = 0x03 "0.5f", // 1_2 = 0x04 "0.375f",// 3_8 = 0x05 "0.25f", // 1_4 = 0x06 "0.125f",// 1_8 = 0x07 "ERROR5", // 0x08 "ERROR6", // 0x09 "ERROR7", // 0x0a "ERROR8", // 0x0b "ERROR9", // 0x0c "ERROR10", // 0x0d "ERROR11", // 0x0e "ERROR12", // 0x0f I_KCOLORS"[0].r", // K0_R = 0x10 I_KCOLORS"[1].r", // K1_R = 0x11 I_KCOLORS"[2].r", // K2_R = 0x12 I_KCOLORS"[3].r", // K3_R = 0x13 I_KCOLORS"[0].g", // K0_G = 0x14 I_KCOLORS"[1].g", // K1_G = 0x15 I_KCOLORS"[2].g", // K2_G = 0x16 I_KCOLORS"[3].g", // K3_G = 0x17 I_KCOLORS"[0].b", // K0_B = 0x18 I_KCOLORS"[1].b", // K1_B = 0x19 I_KCOLORS"[2].b", // K2_B = 0x1A I_KCOLORS"[3].b", // K3_B = 0x1B I_KCOLORS"[0].a", // K0_A = 0x1C I_KCOLORS"[1].a", // K1_A = 0x1D I_KCOLORS"[2].a", // K2_A = 0x1E I_KCOLORS"[3].a", // K3_A = 0x1F }; static const char *tevScaleTable[] = // CS { "1.0f", // SCALE_1 "2.0f", // SCALE_2 "4.0f", // SCALE_4 "0.5f", // DIVIDE_2 }; static const char *tevBiasTable[] = // TB { "", // ZERO, "+0.5f", // ADDHALF, "-0.5f", // SUBHALF, "", }; static const char *tevOpTable[] = { // TEV "+", // TEVOP_ADD = 0, "-", // TEVOP_SUB = 1, }; static const char *tevCInputTable[] = // CC { "(prev.rgb)", // CPREV, "(prev.aaa)", // APREV, "(c0.rgb)", // C0, "(c0.aaa)", // A0, "(c1.rgb)", // C1, "(c1.aaa)", // A1, "(c2.rgb)", // C2, "(c2.aaa)", // A2, "(textemp.rgb)", // TEXC, "(textemp.aaa)", // TEXA, "(rastemp.rgb)", // RASC, "(rastemp.aaa)", // RASA, "float3(1.0f, 1.0f, 1.0f)", // ONE "float3(0.5f, 0.5f, 0.5f)", // HALF "(konsttemp.rgb)", //"konsttemp.rgb", // KONST "float3(0.0f, 0.0f, 0.0f)", // ZERO ///added extra values to map clamped values "(cprev.rgb)", // CPREV, "(cprev.aaa)", // APREV, "(cc0.rgb)", // C0, "(cc0.aaa)", // A0, "(cc1.rgb)", // C1, "(cc1.aaa)", // A1, "(cc2.rgb)", // C2, "(cc2.aaa)", // A2, "(textemp.rgb)", // TEXC, "(textemp.aaa)", // TEXA, "(crastemp.rgb)", // RASC, "(crastemp.aaa)", // RASA, "float3(1.0f, 1.0f, 1.0f)", // ONE "float3(0.5f, 0.5f, 0.5f)", // HALF "(ckonsttemp.rgb)", //"konsttemp.rgb", // KONST "float3(0.0f, 0.0f, 0.0f)", // ZERO "PADERROR1", "PADERROR2", "PADERROR3", "PADERROR4" }; static const char *tevAInputTable[] = // CA { "prev", // APREV, "c0", // A0, "c1", // A1, "c2", // A2, "textemp", // TEXA, "rastemp", // RASA, "konsttemp", // KONST, (hw1 had quarter) "float4(0.0f, 0.0f, 0.0f, 0.0f)", // ZERO ///added extra values to map clamped values "cprev", // APREV, "cc0", // A0, "cc1", // A1, "cc2", // A2, "textemp", // TEXA, "crastemp", // RASA, "ckonsttemp", // KONST, (hw1 had quarter) "float4(0.0f, 0.0f, 0.0f, 0.0f)", // ZERO "PADERROR5", "PADERROR6", "PADERROR7", "PADERROR8", "PADERROR9", "PADERROR10", "PADERROR11", "PADERROR12", }; static const char *tevRasTable[] = { "colors_0", "colors_1", "ERROR13", //2 "ERROR14", //3 "ERROR15", //4 "float4(alphabump,alphabump,alphabump,alphabump)", // use bump alpha "(float4(alphabump,alphabump,alphabump,alphabump)*(255.0f/248.0f))", //normalized "float4(0.0f, 0.0f, 0.0f, 0.0f)", // zero }; //static const char *tevTexFunc[] = { "tex2D", "texRECT" }; static const char *tevCOutputTable[] = { "prev.rgb", "c0.rgb", "c1.rgb", "c2.rgb" }; static const char *tevAOutputTable[] = { "prev.a", "c0.a", "c1.a", "c2.a" }; static const char *tevIndAlphaSel[] = {"", "x", "y", "z"}; //static const char *tevIndAlphaScale[] = {"", "*32", "*16", "*8"}; static const char *tevIndAlphaScale[] = {"*(248.0f/255.0f)", "*(224.0f/255.0f)", "*(240.0f/255.0f)", "*(248.0f/255.0f)"}; static const char *tevIndBiasField[] = {"", "x", "y", "xy", "z", "xz", "yz", "xyz"}; // indexed by bias static const char *tevIndBiasAdd[] = {"-128.0f", "1.0f", "1.0f", "1.0f" }; // indexed by fmt static const char *tevIndWrapStart[] = {"0.0f", "256.0f", "128.0f", "64.0f", "32.0f", "16.0f", "0.001f" }; static const char *tevIndFmtScale[] = {"255.0f", "31.0f", "15.0f", "7.0f" }; struct RegisterState { bool ColorNeedOverflowControl; bool AlphaNeedOverflowControl; bool AuxStored; }; static char swapModeTable[4][5]; static char text[16384]; // We can't use function defines since the Qualcomm shader compiler doesn't support it static const char *GLSLConvertFunctions[] = { "frac", // HLSL "fract", // GLSL "lerp", "mix" }; #define FUNC_FRAC 0 #define FUNC_LERP 2 static void BuildSwapModeTable() { static const char *swapColors = "rgba"; for (int i = 0; i < 4; i++) { swapModeTable[i][0] = swapColors[bpmem.tevksel[i*2].swap1]; swapModeTable[i][1] = swapColors[bpmem.tevksel[i*2].swap2]; swapModeTable[i][2] = swapColors[bpmem.tevksel[i*2+1].swap1]; swapModeTable[i][3] = swapColors[bpmem.tevksel[i*2+1].swap2]; swapModeTable[i][4] = '\0'; } } template static void WriteStage(T& out, pixel_shader_uid_data& uid_data, int n, API_TYPE ApiType, RegisterState RegisterStates[4]); template static void SampleTexture(T& out, const char *destination, const char *texcoords, const char *texswap, int texmap, API_TYPE ApiType); template static void WriteAlphaTest(T& out, pixel_shader_uid_data& uid_data, API_TYPE ApiType,DSTALPHA_MODE dstAlphaMode, bool per_pixel_depth); template static void WriteFog(T& out, pixel_shader_uid_data& uid_data, API_TYPE ApiType); template static void GeneratePixelShader(T& out, DSTALPHA_MODE dstAlphaMode, API_TYPE ApiType, u32 components) { // Non-uid template parameters will write to the dummy data (=> gets optimized out) pixel_shader_uid_data dummy_data; pixel_shader_uid_data& uid_data = (&out.template GetUidData() != NULL) ? out.template GetUidData() : dummy_data; out.SetBuffer(text); #ifndef ANDROID locale_t locale; locale_t old_locale; if (out.GetBuffer() != NULL) { locale = newlocale(LC_NUMERIC_MASK, "C", NULL); // New locale for compilation old_locale = uselocale(locale); // Apply the locale for this thread } #endif text[sizeof(text) - 1] = 0x7C; // canary unsigned int numStages = bpmem.genMode.numtevstages + 1; unsigned int numTexgen = bpmem.genMode.numtexgens; const bool per_pixel_depth = (bpmem.ztex2.op != ZTEXTURE_DISABLE && !bpmem.zcontrol.early_ztest && bpmem.zmode.testenable) || !g_ActiveConfig.bFastDepthCalc; const bool bOpenGL = ApiType == API_OPENGL; out.Write("//Pixel Shader for TEV stages\n"); out.Write("//%i TEV stages, %i texgens, %i IND stages\n", numStages, numTexgen, bpmem.genMode.numindstages); uid_data.dstAlphaMode = dstAlphaMode; uid_data.genMode_numindstages = bpmem.genMode.numindstages; uid_data.genMode_numtevstages = bpmem.genMode.numtevstages; uid_data.genMode_numtexgens = bpmem.genMode.numtexgens; if (ApiType == API_OPENGL) { // Fmod implementation gleaned from Nvidia // At http://http.developer.nvidia.com/Cg/fmod.html out.Write("float fmod( float x, float y )\n"); out.Write("{\n"); out.Write("\tfloat z = fract( abs( x / y) ) * abs( y );\n"); out.Write("\treturn (x < 0.0) ? -z : z;\n"); out.Write("}\n"); // Declare samplers for (int i = 0; i < 8; ++i) out.Write("uniform sampler2D samp%d;\n", i); } else { // Declare samplers for (int i = 0; i < 8; ++i) out.Write("%s samp%d : register(s%d);\n", (ApiType == API_D3D11) ? "sampler" : "uniform sampler2D", i, i); if (ApiType == API_D3D11) { out.Write("\n"); for (int i = 0; i < 8; ++i) { out.Write("Texture2D Tex%d : register(t%d);\n", i, i); } } } out.Write("\n"); if (g_ActiveConfig.backend_info.bSupportsGLSLUBO) out.Write("layout(std140) uniform PSBlock {\n"); DeclareUniform(out, ApiType, g_ActiveConfig.backend_info.bSupportsGLSLUBO, C_COLORS, "float4", I_COLORS"[4]"); DeclareUniform(out, ApiType, g_ActiveConfig.backend_info.bSupportsGLSLUBO, C_KCOLORS, "float4", I_KCOLORS"[4]"); DeclareUniform(out, ApiType, g_ActiveConfig.backend_info.bSupportsGLSLUBO, C_ALPHA, "float4", I_ALPHA"[1]"); // TODO: Why is this an array...-.- DeclareUniform(out, ApiType, g_ActiveConfig.backend_info.bSupportsGLSLUBO, C_TEXDIMS, "float4", I_TEXDIMS"[8]"); DeclareUniform(out, ApiType, g_ActiveConfig.backend_info.bSupportsGLSLUBO, C_ZBIAS, "float4", I_ZBIAS"[2]"); DeclareUniform(out, ApiType, g_ActiveConfig.backend_info.bSupportsGLSLUBO, C_INDTEXSCALE, "float4", I_INDTEXSCALE"[2]"); DeclareUniform(out, ApiType, g_ActiveConfig.backend_info.bSupportsGLSLUBO, C_INDTEXMTX, "float4", I_INDTEXMTX"[6]"); DeclareUniform(out, ApiType, g_ActiveConfig.backend_info.bSupportsGLSLUBO, C_FOG, "float4", I_FOG"[3]"); // For pixel lighting - TODO: Should only be defined when per pixel lighting is enabled! DeclareUniform(out, ApiType, g_ActiveConfig.backend_info.bSupportsGLSLUBO, C_PLIGHTS, "float4", I_PLIGHTS"[40]"); DeclareUniform(out, ApiType, g_ActiveConfig.backend_info.bSupportsGLSLUBO, C_PMATERIALS, "float4", I_PMATERIALS"[4]"); if (g_ActiveConfig.backend_info.bSupportsGLSLUBO) out.Write("};\n"); if (ApiType == API_OPENGL) { out.Write("COLOROUT(ocol0)\n"); if (dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND) out.Write("COLOROUT(ocol1)\n"); if (per_pixel_depth) out.Write("#define depth gl_FragDepth\n"); out.Write("float4 rawpos = gl_FragCoord;\n"); out.Write("VARYIN float4 colors_02;\n"); out.Write("VARYIN float4 colors_12;\n"); out.Write("float4 colors_0 = colors_02;\n"); out.Write("float4 colors_1 = colors_12;\n"); // compute window position if needed because binding semantic WPOS is not widely supported // Let's set up attributes if (xfregs.numTexGen.numTexGens < 7) { for (int i = 0; i < 8; ++i) { out.Write("VARYIN float3 uv%d_2;\n", i); out.Write("float3 uv%d = uv%d_2;\n", i, i); } out.Write("VARYIN float4 clipPos_2;\n"); out.Write("float4 clipPos = clipPos_2;\n"); if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting) { out.Write("VARYIN float4 Normal_2;\n"); out.Write("float4 Normal = Normal_2;\n"); } } else { // wpos is in w of first 4 texcoords if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting) { for (int i = 0; i < 8; ++i) { out.Write("VARYIN float4 uv%d_2;\n", i); out.Write("float4 uv%d = uv%d_2;\n", i, i); } } else { for (unsigned int i = 0; i < xfregs.numTexGen.numTexGens; ++i) { out.Write("VARYIN float%d uv%d_2;\n", i < 4 ? 4 : 3 , i); out.Write("float%d uv%d = uv%d_2;\n", i < 4 ? 4 : 3 , i, i); } } out.Write("float4 clipPos;\n"); } out.Write("void main()\n{\n"); } else { out.Write("void main(\n"); if(ApiType != API_D3D11) { out.Write(" out float4 ocol0 : COLOR0,%s%s\n in float4 rawpos : %s,\n", dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND ? "\n out float4 ocol1 : COLOR1," : "", per_pixel_depth ? "\n out float depth : DEPTH," : "", ApiType & API_D3D9_SM20 ? "POSITION" : "VPOS"); } else { out.Write(" out float4 ocol0 : SV_Target0,%s%s\n in float4 rawpos : SV_Position,\n", dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND ? "\n out float4 ocol1 : SV_Target1," : "", per_pixel_depth ? "\n out float depth : SV_Depth," : ""); } // "centroid" attribute is only supported by D3D11 const char* optCentroid = (ApiType == API_D3D11 ? "centroid" : ""); out.Write(" in %s float4 colors_0 : COLOR0,\n", optCentroid); out.Write(" in %s float4 colors_1 : COLOR1", optCentroid); // compute window position if needed because binding semantic WPOS is not widely supported if (numTexgen < 7) { for (unsigned int i = 0; i < numTexgen; ++i) out.Write(",\n in %s float3 uv%d : TEXCOORD%d", optCentroid, i, i); out.Write(",\n in %s float4 clipPos : TEXCOORD%d", optCentroid, numTexgen); if(g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting) out.Write(",\n in %s float4 Normal : TEXCOORD%d", optCentroid, numTexgen + 1); out.Write(" ) {\n"); } else { // wpos is in w of first 4 texcoords if(g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting) { for (int i = 0; i < 8; ++i) out.Write(",\n in float4 uv%d : TEXCOORD%d", i, i); } else { for (unsigned int i = 0; i < xfregs.numTexGen.numTexGens; ++i) out.Write(",\n in float%d uv%d : TEXCOORD%d", i < 4 ? 4 : 3 , i, i); } out.Write(" ) {\n"); out.Write("\tfloat4 clipPos = float4(0.0f, 0.0f, 0.0f, 0.0f);"); } } out.Write(" float4 c0 = " I_COLORS"[1], c1 = " I_COLORS"[2], c2 = " I_COLORS"[3], prev = float4(0.0f, 0.0f, 0.0f, 0.0f), textemp = float4(0.0f, 0.0f, 0.0f, 0.0f), rastemp = float4(0.0f, 0.0f, 0.0f, 0.0f), konsttemp = float4(0.0f, 0.0f, 0.0f, 0.0f);\n" " float3 comp16 = float3(1.0f, 255.0f, 0.0f), comp24 = float3(1.0f, 255.0f, 255.0f*255.0f);\n" " float alphabump=0.0f;\n" " float3 tevcoord=float3(0.0f, 0.0f, 0.0f);\n" " float2 wrappedcoord=float2(0.0f,0.0f), tempcoord=float2(0.0f,0.0f);\n" " float4 cc0=float4(0.0f,0.0f,0.0f,0.0f), cc1=float4(0.0f,0.0f,0.0f,0.0f);\n" " float4 cc2=float4(0.0f,0.0f,0.0f,0.0f), cprev=float4(0.0f,0.0f,0.0f,0.0f);\n" " float4 crastemp=float4(0.0f,0.0f,0.0f,0.0f),ckonsttemp=float4(0.0f,0.0f,0.0f,0.0f);\n\n"); if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting) { uid_data.xfregs_numTexGen_numTexGens = xfregs.numTexGen.numTexGens; if (xfregs.numTexGen.numTexGens < 7) { out.Write("\tfloat3 _norm0 = normalize(Normal.xyz);\n\n"); out.Write("\tfloat3 pos = float3(clipPos.x,clipPos.y,Normal.w);\n"); } else { out.Write("\tfloat3 _norm0 = normalize(float3(uv4.w,uv5.w,uv6.w));\n\n"); out.Write("\tfloat3 pos = float3(uv0.w,uv1.w,uv7.w);\n"); } out.Write("\tfloat4 mat, lacc;\n" "\tfloat3 ldir, h;\n" "\tfloat dist, dist2, attn;\n"); out.SetConstantsUsed(C_PLIGHTS, C_PLIGHTS+39); // TODO: Can be optimized further out.SetConstantsUsed(C_PMATERIALS, C_PMATERIALS+3); uid_data.components = components; GenerateLightingShader(out, uid_data.lighting, components, I_PMATERIALS, I_PLIGHTS, "colors_", "colors_"); } if (numTexgen < 7) out.Write("\tclipPos = float4(rawpos.x, rawpos.y, clipPos.z, clipPos.w);\n"); else out.Write("\tfloat4 clipPos = float4(rawpos.x, rawpos.y, uv2.w, uv3.w);\n"); // HACK to handle cases where the tex gen is not enabled if (numTexgen == 0) { out.Write("\tfloat3 uv0 = float3(0.0f, 0.0f, 0.0f);\n"); } else { out.SetConstantsUsed(C_TEXDIMS, C_TEXDIMS+numTexgen-1); for (unsigned int i = 0; i < numTexgen; ++i) { // optional perspective divides uid_data.texMtxInfo_n_projection |= xfregs.texMtxInfo[i].projection << i; if (xfregs.texMtxInfo[i].projection == XF_TEXPROJ_STQ) { out.Write("\tif (uv%d.z != 0.0f)", i); out.Write("\t\tuv%d.xy = uv%d.xy / uv%d.z;\n", i, i, i); } out.Write("uv%d.xy = uv%d.xy * " I_TEXDIMS"[%d].zw;\n", i, i, i); } } // indirect texture map lookup int nIndirectStagesUsed = 0; if (bpmem.genMode.numindstages > 0) { for (unsigned int i = 0; i < numStages; ++i) { if (bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < bpmem.genMode.numindstages) nIndirectStagesUsed |= 1 << bpmem.tevind[i].bt; } } uid_data.nIndirectStagesUsed = nIndirectStagesUsed; for (u32 i = 0; i < bpmem.genMode.numindstages; ++i) { if (nIndirectStagesUsed & (1 << i)) { unsigned int texcoord = bpmem.tevindref.getTexCoord(i); unsigned int texmap = bpmem.tevindref.getTexMap(i); uid_data.SetTevindrefValues(i, texcoord, texmap); if (texcoord < numTexgen) { out.SetConstantsUsed(C_INDTEXSCALE+i/2,C_INDTEXSCALE+i/2); out.Write("\ttempcoord = uv%d.xy * " I_INDTEXSCALE"[%d].%s;\n", texcoord, i/2, (i&1)?"zw":"xy"); } else out.Write("\ttempcoord = float2(0.0f, 0.0f);\n"); char buffer[32]; sprintf(buffer, "float3 indtex%d", i); SampleTexture(out, buffer, "tempcoord", "abg", texmap, ApiType); } } RegisterState RegisterStates[4]; RegisterStates[0].AlphaNeedOverflowControl = false; RegisterStates[0].ColorNeedOverflowControl = false; RegisterStates[0].AuxStored = false; for(int i = 1; i < 4; i++) { RegisterStates[i].AlphaNeedOverflowControl = true; RegisterStates[i].ColorNeedOverflowControl = true; RegisterStates[i].AuxStored = false; } // Uid fields for BuildSwapModeTable are set in WriteStage BuildSwapModeTable(); for (unsigned int i = 0; i < numStages; i++) WriteStage(out, uid_data, i, ApiType, RegisterStates); // build the equation for this stage if (numStages) { // The results of the last texenv stage are put onto the screen, // regardless of the used destination register if(bpmem.combiners[numStages - 1].colorC.dest != 0) { bool retrieveFromAuxRegister = !RegisterStates[bpmem.combiners[numStages - 1].colorC.dest].ColorNeedOverflowControl && RegisterStates[bpmem.combiners[numStages - 1].colorC.dest].AuxStored; out.Write("\tprev.rgb = %s%s;\n", retrieveFromAuxRegister ? "c" : "" , tevCOutputTable[bpmem.combiners[numStages - 1].colorC.dest]); RegisterStates[0].ColorNeedOverflowControl = RegisterStates[bpmem.combiners[numStages - 1].colorC.dest].ColorNeedOverflowControl; } if(bpmem.combiners[numStages - 1].alphaC.dest != 0) { bool retrieveFromAuxRegister = !RegisterStates[bpmem.combiners[numStages - 1].alphaC.dest].AlphaNeedOverflowControl && RegisterStates[bpmem.combiners[numStages - 1].alphaC.dest].AuxStored; out.Write("\tprev.a = %s%s;\n", retrieveFromAuxRegister ? "c" : "" , tevAOutputTable[bpmem.combiners[numStages - 1].alphaC.dest]); RegisterStates[0].AlphaNeedOverflowControl = RegisterStates[bpmem.combiners[numStages - 1].alphaC.dest].AlphaNeedOverflowControl; } } // emulation of unsigned 8 overflow when casting if needed if(RegisterStates[0].AlphaNeedOverflowControl || RegisterStates[0].ColorNeedOverflowControl) out.Write("\tprev = %s(prev * (255.0f/256.0f)) * (256.0f/255.0f);\n", GLSLConvertFunctions[FUNC_FRAC + bOpenGL]); AlphaTest::TEST_RESULT Pretest = bpmem.alpha_test.TestResult(); uid_data.Pretest = Pretest; if (Pretest == AlphaTest::UNDETERMINED) WriteAlphaTest(out, uid_data, ApiType, dstAlphaMode, per_pixel_depth); // D3D9 doesn't support readback of depth in pixel shader, so we always have to calculate it again. // This shouldn't be a performance issue as the written depth is usually still from perspective division // but this isn't true for z-textures, so there will be depth issues between enabled and disabled z-textures fragments if ((ApiType == API_OPENGL || ApiType == API_D3D11) && g_ActiveConfig.bFastDepthCalc) out.Write("float zCoord = rawpos.z;\n"); else { out.SetConstantsUsed(C_ZBIAS+1, C_ZBIAS+1); // the screen space depth value = far z + (clip z / clip w) * z range out.Write("float zCoord = " I_ZBIAS"[1].x + (clipPos.z / clipPos.w) * " I_ZBIAS"[1].y;\n"); } // depth texture can safely be ignored if the result won't be written to the depth buffer (early_ztest) and isn't used for fog either const bool skip_ztexture = !per_pixel_depth && !bpmem.fog.c_proj_fsel.fsel; uid_data.ztex_op = bpmem.ztex2.op; uid_data.per_pixel_depth = per_pixel_depth; uid_data.fast_depth_calc = g_ActiveConfig.bFastDepthCalc; uid_data.fog_fsel = bpmem.fog.c_proj_fsel.fsel; // Note: z-textures are not written to depth buffer if early depth test is used if (per_pixel_depth && bpmem.zcontrol.early_ztest) out.Write("depth = zCoord;\n"); if (bpmem.ztex2.op != ZTEXTURE_DISABLE && !skip_ztexture) { // use the texture input of the last texture stage (textemp), hopefully this has been read and is in correct format... out.SetConstantsUsed(C_ZBIAS, C_ZBIAS+1); out.Write("zCoord = dot(" I_ZBIAS"[0].xyzw, textemp.xyzw) + " I_ZBIAS"[1].w %s;\n", (bpmem.ztex2.op == ZTEXTURE_ADD) ? "+ zCoord" : ""); // U24 overflow emulation out.Write("zCoord = zCoord * (16777215.0f/16777216.0f);\n"); out.Write("zCoord = %s(zCoord);\n", GLSLConvertFunctions[FUNC_FRAC + bOpenGL]); out.Write("zCoord = zCoord * (16777216.0f/16777215.0f);\n"); // Note: depth texture output is only written to depth buffer if late depth test is used // final depth value is used for fog calculation, though if (per_pixel_depth) out.Write("depth = zCoord;\n"); } else if (per_pixel_depth && !bpmem.zcontrol.early_ztest) out.Write("depth = zCoord;\n"); if (dstAlphaMode == DSTALPHA_ALPHA_PASS) { out.SetConstantsUsed(C_ALPHA, C_ALPHA); out.Write("\tocol0 = float4(prev.rgb, " I_ALPHA"[0].a);\n"); } else { WriteFog(out, uid_data, ApiType); out.Write("\tocol0 = prev;\n"); } // Use dual-source color blending to perform dst alpha in a single pass if (dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND) { out.SetConstantsUsed(C_ALPHA, C_ALPHA); if(ApiType & API_D3D9) { // alpha component must be 0 or the shader will not compile (Direct3D 9Ex restriction) // Colors will be blended against the color from ocol1 in D3D 9... out.Write("\tocol1 = float4(prev.a, prev.a, prev.a, 0.0f);\n"); } else { // Colors will be blended against the alpha from ocol1... out.Write("\tocol1 = prev;\n"); } // ...and the alpha from ocol0 will be written to the framebuffer. out.Write("\tocol0.a = " I_ALPHA"[0].a;\n"); } out.Write("}\n"); if (text[sizeof(text) - 1] != 0x7C) PanicAlert("PixelShader generator - buffer too small, canary has been eaten!"); #ifndef ANDROID if (out.GetBuffer() != NULL) { uselocale(old_locale); // restore locale freelocale(locale); } #endif } //table with the color compare operations static const char *TEVCMPColorOPTable[16] = { "float3(0.0f, 0.0f, 0.0f)",//0 "float3(0.0f, 0.0f, 0.0f)",//1 "float3(0.0f, 0.0f, 0.0f)",//2 "float3(0.0f, 0.0f, 0.0f)",//3 "float3(0.0f, 0.0f, 0.0f)",//4 "float3(0.0f, 0.0f, 0.0f)",//5 "float3(0.0f, 0.0f, 0.0f)",//6 "float3(0.0f, 0.0f, 0.0f)",//7 " %s + ((%s.r >= %s.r + (0.25f/255.0f)) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_R8_GT 8 " %s + ((abs(%s.r - %s.r) < (0.5f/255.0f)) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_R8_EQ 9 " %s + (( dot(%s.rgb, comp16) >= (dot(%s.rgb, comp16) + (0.25f/255.0f))) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_GR16_GT 10 " %s + (abs(dot(%s.rgb, comp16) - dot(%s.rgb, comp16)) < (0.5f/255.0f) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_GR16_EQ 11 " %s + (( dot(%s.rgb, comp24) >= (dot(%s.rgb, comp24) + (0.25f/255.0f))) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_BGR24_GT 12 " %s + (abs(dot(%s.rgb, comp24) - dot(%s.rgb, comp24)) < (0.5f/255.0f) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_BGR24_EQ 13 " %s + (max(sign(%s.rgb - %s.rgb - (0.25f/255.0f)), float3(0.0f, 0.0f, 0.0f)) * %s)",//#define TEVCMP_RGB8_GT 14 " %s + ((float3(1.0f, 1.0f, 1.0f) - max(sign(abs(%s.rgb - %s.rgb) - (0.5f/255.0f)), float3(0.0f, 0.0f, 0.0f))) * %s)"//#define TEVCMP_RGB8_EQ 15 }; //table with the alpha compare operations static const char *TEVCMPAlphaOPTable[16] = { "0.0f",//0 "0.0f",//1 "0.0f",//2 "0.0f",//3 "0.0f",//4 "0.0f",//5 "0.0f",//6 "0.0f",//7 " %s.a + ((%s.r >= (%s.r + (0.25f/255.0f))) ? %s.a : 0.0f)",//#define TEVCMP_R8_GT 8 " %s.a + (abs(%s.r - %s.r) < (0.5f/255.0f) ? %s.a : 0.0f)",//#define TEVCMP_R8_EQ 9 " %s.a + ((dot(%s.rgb, comp16) >= (dot(%s.rgb, comp16) + (0.25f/255.0f))) ? %s.a : 0.0f)",//#define TEVCMP_GR16_GT 10 " %s.a + (abs(dot(%s.rgb, comp16) - dot(%s.rgb, comp16)) < (0.5f/255.0f) ? %s.a : 0.0f)",//#define TEVCMP_GR16_EQ 11 " %s.a + ((dot(%s.rgb, comp24) >= (dot(%s.rgb, comp24) + (0.25f/255.0f))) ? %s.a : 0.0f)",//#define TEVCMP_BGR24_GT 12 " %s.a + (abs(dot(%s.rgb, comp24) - dot(%s.rgb, comp24)) < (0.5f/255.0f) ? %s.a : 0.0f)",//#define TEVCMP_BGR24_EQ 13 " %s.a + ((%s.a >= (%s.a + (0.25f/255.0f))) ? %s.a : 0.0f)",//#define TEVCMP_A8_GT 14 " %s.a + (abs(%s.a - %s.a) < (0.5f/255.0f) ? %s.a : 0.0f)"//#define TEVCMP_A8_EQ 15 }; template static void WriteStage(T& out, pixel_shader_uid_data& uid_data, int n, API_TYPE ApiType, RegisterState RegisterStates[4]) { int texcoord = bpmem.tevorders[n/2].getTexCoord(n&1); bool bHasTexCoord = (u32)texcoord < bpmem.genMode.numtexgens; bool bHasIndStage = bpmem.tevind[n].IsActive() && bpmem.tevind[n].bt < bpmem.genMode.numindstages; bool bOpenGL = ApiType == API_OPENGL; // HACK to handle cases where the tex gen is not enabled if (!bHasTexCoord) texcoord = 0; out.Write("// TEV stage %d\n", n); uid_data.bHasIndStage |= bHasIndStage << n; uid_data.tevorders_n_texcoord |= (u64)texcoord << (3 * n); if (bHasIndStage) { uid_data.tevind_n_bs |= bpmem.tevind[n].bs << (2*n); uid_data.tevind_n_bt |= bpmem.tevind[n].bt << (2*n); uid_data.tevind_n_fmt |= bpmem.tevind[n].fmt << (2*n); out.Write("// indirect op\n"); // perform the indirect op on the incoming regular coordinates using indtex%d as the offset coords if (bpmem.tevind[n].bs != ITBA_OFF) { out.Write("alphabump = indtex%d.%s %s;\n", bpmem.tevind[n].bt, tevIndAlphaSel[bpmem.tevind[n].bs], tevIndAlphaScale[bpmem.tevind[n].fmt]); } // format out.Write("float3 indtevcrd%d = indtex%d * %s;\n", n, bpmem.tevind[n].bt, tevIndFmtScale[bpmem.tevind[n].fmt]); // bias uid_data.Set_tevind_bias(n, bpmem.tevind[n].bias); if (bpmem.tevind[n].bias != ITB_NONE ) out.Write("indtevcrd%d.%s += %s;\n", n, tevIndBiasField[bpmem.tevind[n].bias], tevIndBiasAdd[bpmem.tevind[n].fmt]); // multiply by offset matrix and scale uid_data.Set_tevind_mid(n, bpmem.tevind[n].mid); if (bpmem.tevind[n].mid != 0) { if (bpmem.tevind[n].mid <= 3) { int mtxidx = 2*(bpmem.tevind[n].mid-1); out.SetConstantsUsed(C_INDTEXMTX+mtxidx, C_INDTEXMTX+mtxidx); out.Write("float2 indtevtrans%d = float2(dot(" I_INDTEXMTX"[%d].xyz, indtevcrd%d), dot(" I_INDTEXMTX"[%d].xyz, indtevcrd%d));\n", n, mtxidx, n, mtxidx+1, n); } else if (bpmem.tevind[n].mid <= 7 && bHasTexCoord) { // s matrix _assert_(bpmem.tevind[n].mid >= 5); int mtxidx = 2*(bpmem.tevind[n].mid-5); out.SetConstantsUsed(C_INDTEXMTX+mtxidx, C_INDTEXMTX+mtxidx); out.Write("float2 indtevtrans%d = " I_INDTEXMTX"[%d].ww * uv%d.xy * indtevcrd%d.xx;\n", n, mtxidx, texcoord, n); } else if (bpmem.tevind[n].mid <= 11 && bHasTexCoord) { // t matrix _assert_(bpmem.tevind[n].mid >= 9); int mtxidx = 2*(bpmem.tevind[n].mid-9); out.SetConstantsUsed(C_INDTEXMTX+mtxidx, C_INDTEXMTX+mtxidx); out.Write("float2 indtevtrans%d = " I_INDTEXMTX"[%d].ww * uv%d.xy * indtevcrd%d.yy;\n", n, mtxidx, texcoord, n); } else { out.Write("float2 indtevtrans%d = float2(0.0f, 0.0f);\n", n); } } else { out.Write("float2 indtevtrans%d = float2(0.0f, 0.0f);\n", n); } // --------- // Wrapping // --------- uid_data.Set_tevind_sw(n, bpmem.tevind[n].sw); uid_data.Set_tevind_tw(n, bpmem.tevind[n].tw); uid_data.tevind_n_fb_addprev |= bpmem.tevind[n].fb_addprev << n; // wrap S if (bpmem.tevind[n].sw == ITW_OFF) out.Write("wrappedcoord.x = uv%d.x;\n", texcoord); else if (bpmem.tevind[n].sw == ITW_0) out.Write("wrappedcoord.x = 0.0f;\n"); else out.Write("wrappedcoord.x = fmod( uv%d.x, %s );\n", texcoord, tevIndWrapStart[bpmem.tevind[n].sw]); // wrap T if (bpmem.tevind[n].tw == ITW_OFF) out.Write("wrappedcoord.y = uv%d.y;\n", texcoord); else if (bpmem.tevind[n].tw == ITW_0) out.Write("wrappedcoord.y = 0.0f;\n"); else out.Write("wrappedcoord.y = fmod( uv%d.y, %s );\n", texcoord, tevIndWrapStart[bpmem.tevind[n].tw]); if (bpmem.tevind[n].fb_addprev) // add previous tevcoord out.Write("tevcoord.xy += wrappedcoord + indtevtrans%d;\n", n); else out.Write("tevcoord.xy = wrappedcoord + indtevtrans%d;\n", n); } TevStageCombiner::ColorCombiner &cc = bpmem.combiners[n].colorC; TevStageCombiner::AlphaCombiner &ac = bpmem.combiners[n].alphaC; uid_data.cc_n_d = (u64)cc.d << (4*n); uid_data.cc_n_c = (u64)cc.c << (4*n); uid_data.cc_n_b = (u64)cc.b << (4*n); uid_data.cc_n_a = (u64)cc.a << (4*n); uid_data.cc_n_bias = cc.bias << (2*n); uid_data.cc_n_op = cc.op << n; uid_data.cc_n_clamp = cc.clamp << n; uid_data.cc_n_shift = cc.shift << (2*n); uid_data.cc_n_dest = cc.dest << (2*n); uid_data.ac_n_rswap = ac.rswap << (2*n); uid_data.ac_n_tswap = ac.tswap << (2*n); uid_data.ac_n_d = (u64)ac.d << (3*n); uid_data.ac_n_c = (u64)ac.c << (3*n); uid_data.ac_n_b = (u64)ac.b << (3*n); uid_data.ac_n_a = (u64)ac.a << (3*n); uid_data.ac_n_bias = ac.bias << (2*n); uid_data.ac_n_op = ac.op << n; uid_data.ac_n_clamp = ac.clamp << n; uid_data.ac_n_shift = ac.shift << (2*n); uid_data.ac_n_dest = ac.dest << (2*n); if(cc.a == TEVCOLORARG_RASA || cc.a == TEVCOLORARG_RASC || cc.b == TEVCOLORARG_RASA || cc.b == TEVCOLORARG_RASC || cc.c == TEVCOLORARG_RASA || cc.c == TEVCOLORARG_RASC || cc.d == TEVCOLORARG_RASA || cc.d == TEVCOLORARG_RASC || ac.a == TEVALPHAARG_RASA || ac.b == TEVALPHAARG_RASA || ac.c == TEVALPHAARG_RASA || ac.d == TEVALPHAARG_RASA) { const int i = bpmem.combiners[n].alphaC.rswap; uid_data.tevksel_n_swap1 = bpmem.tevksel[i*2 ].swap1 << (2 * (i*2 )); uid_data.tevksel_n_swap1 = bpmem.tevksel[i*2+1].swap1 << (2 * (i*2+1)); uid_data.tevksel_n_swap2 = bpmem.tevksel[i*2 ].swap2 << (2 * (i*2 )); uid_data.tevksel_n_swap2 = bpmem.tevksel[i*2+1].swap2 << (2 * (i*2+1)); char *rasswap = swapModeTable[bpmem.combiners[n].alphaC.rswap]; out.Write("rastemp = %s.%s;\n", tevRasTable[bpmem.tevorders[n / 2].getColorChan(n & 1)], rasswap); out.Write("crastemp = %s(rastemp * (255.0f/256.0f)) * (256.0f/255.0f);\n", GLSLConvertFunctions[FUNC_FRAC + bOpenGL]); } if (bpmem.tevorders[n/2].getEnable(n&1)) { if (!bHasIndStage) { // calc tevcord if(bHasTexCoord) out.Write("tevcoord.xy = uv%d.xy;\n", texcoord); else out.Write("tevcoord.xy = float2(0.0f, 0.0f);\n"); } const int i = bpmem.combiners[n].alphaC.tswap; uid_data.tevksel_n_swap1 = bpmem.tevksel[i*2 ].swap1 << (2 * (i*2 )); uid_data.tevksel_n_swap1 = bpmem.tevksel[i*2+1].swap1 << (2 * (i*2+1)); uid_data.tevksel_n_swap2 = bpmem.tevksel[i*2 ].swap2 << (2 * (i*2 )); uid_data.tevksel_n_swap2 = bpmem.tevksel[i*2+1].swap2 << (2 * (i*2+1)); char *texswap = swapModeTable[bpmem.combiners[n].alphaC.tswap]; int texmap = bpmem.tevorders[n/2].getTexMap(n&1); uid_data.SetTevindrefTexmap(i, texmap); SampleTexture(out, "textemp", "tevcoord", texswap, texmap, ApiType); } else { out.Write("textemp = float4(1.0f, 1.0f, 1.0f, 1.0f);\n"); } if (cc.a == TEVCOLORARG_KONST || cc.b == TEVCOLORARG_KONST || cc.c == TEVCOLORARG_KONST || cc.d == TEVCOLORARG_KONST || ac.a == TEVALPHAARG_KONST || ac.b == TEVALPHAARG_KONST || ac.c == TEVALPHAARG_KONST || ac.d == TEVALPHAARG_KONST) { int kc = bpmem.tevksel[n / 2].getKC(n & 1); int ka = bpmem.tevksel[n / 2].getKA(n & 1); uid_data.set_tevksel_kcsel(n/2, n & 1, kc); uid_data.set_tevksel_kasel(n/2, n & 1, ka); out.Write("konsttemp = float4(%s, %s);\n", tevKSelTableC[kc], tevKSelTableA[ka]); if(kc > 7 || ka > 7) { out.Write("ckonsttemp = %s(konsttemp * (255.0f/256.0f)) * (256.0f/255.0f);\n", GLSLConvertFunctions[FUNC_FRAC + bOpenGL]); } else { out.Write("ckonsttemp = konsttemp;\n"); } if (kc > 7) out.SetConstantsUsed(C_KCOLORS+((kc-0xc)%4),C_KCOLORS+((kc-0xc)%4)); if (ka > 7) out.SetConstantsUsed(C_KCOLORS+((ka-0xc)%4),C_KCOLORS+((ka-0xc)%4)); } if(cc.a == TEVCOLORARG_CPREV || cc.a == TEVCOLORARG_APREV || cc.b == TEVCOLORARG_CPREV || cc.b == TEVCOLORARG_APREV || cc.c == TEVCOLORARG_CPREV || cc.c == TEVCOLORARG_APREV || ac.a == TEVALPHAARG_APREV || ac.b == TEVALPHAARG_APREV || ac.c == TEVALPHAARG_APREV) { if(RegisterStates[0].AlphaNeedOverflowControl || RegisterStates[0].ColorNeedOverflowControl) { out.Write("cprev = %s(prev * (255.0f/256.0f)) * (256.0f/255.0f);\n", GLSLConvertFunctions[FUNC_FRAC + bOpenGL]); RegisterStates[0].AlphaNeedOverflowControl = false; RegisterStates[0].ColorNeedOverflowControl = false; } else { out.Write("cprev = prev;\n"); } RegisterStates[0].AuxStored = true; } if(cc.a == TEVCOLORARG_C0 || cc.a == TEVCOLORARG_A0 || cc.b == TEVCOLORARG_C0 || cc.b == TEVCOLORARG_A0 || cc.c == TEVCOLORARG_C0 || cc.c == TEVCOLORARG_A0 || ac.a == TEVALPHAARG_A0 || ac.b == TEVALPHAARG_A0 || ac.c == TEVALPHAARG_A0) { out.SetConstantsUsed(C_COLORS+1,C_COLORS+1); if(RegisterStates[1].AlphaNeedOverflowControl || RegisterStates[1].ColorNeedOverflowControl) { out.Write("cc0 = %s(c0 * (255.0f/256.0f)) * (256.0f/255.0f);\n", GLSLConvertFunctions[FUNC_FRAC + bOpenGL]); RegisterStates[1].AlphaNeedOverflowControl = false; RegisterStates[1].ColorNeedOverflowControl = false; } else { out.Write("cc0 = c0;\n"); } RegisterStates[1].AuxStored = true; } if(cc.a == TEVCOLORARG_C1 || cc.a == TEVCOLORARG_A1 || cc.b == TEVCOLORARG_C1 || cc.b == TEVCOLORARG_A1 || cc.c == TEVCOLORARG_C1 || cc.c == TEVCOLORARG_A1 || ac.a == TEVALPHAARG_A1 || ac.b == TEVALPHAARG_A1 || ac.c == TEVALPHAARG_A1) { out.SetConstantsUsed(C_COLORS+2,C_COLORS+2); if(RegisterStates[2].AlphaNeedOverflowControl || RegisterStates[2].ColorNeedOverflowControl) { out.Write("cc1 = %s(c1 * (255.0f/256.0f)) * (256.0f/255.0f);\n", GLSLConvertFunctions[FUNC_FRAC + bOpenGL]); RegisterStates[2].AlphaNeedOverflowControl = false; RegisterStates[2].ColorNeedOverflowControl = false; } else { out.Write("cc1 = c1;\n"); } RegisterStates[2].AuxStored = true; } if(cc.a == TEVCOLORARG_C2 || cc.a == TEVCOLORARG_A2 || cc.b == TEVCOLORARG_C2 || cc.b == TEVCOLORARG_A2 || cc.c == TEVCOLORARG_C2 || cc.c == TEVCOLORARG_A2 || ac.a == TEVALPHAARG_A2 || ac.b == TEVALPHAARG_A2 || ac.c == TEVALPHAARG_A2) { out.SetConstantsUsed(C_COLORS+3,C_COLORS+3); if(RegisterStates[3].AlphaNeedOverflowControl || RegisterStates[3].ColorNeedOverflowControl) { out.Write("cc2 = %s(c2 * (255.0f/256.0f)) * (256.0f/255.0f);\n", GLSLConvertFunctions[FUNC_FRAC + bOpenGL]); RegisterStates[3].AlphaNeedOverflowControl = false; RegisterStates[3].ColorNeedOverflowControl = false; } else { out.Write("cc2 = c2;\n"); } RegisterStates[3].AuxStored = true; } RegisterStates[cc.dest].ColorNeedOverflowControl = (cc.clamp == 0); RegisterStates[cc.dest].AuxStored = false; if (cc.d == TEVCOLORARG_C0 || cc.d == TEVCOLORARG_A0 || ac.d == TEVALPHAARG_A0) out.SetConstantsUsed(C_COLORS+1,C_COLORS+1); if (cc.d == TEVCOLORARG_C1 || cc.d == TEVCOLORARG_A1 || ac.d == TEVALPHAARG_A1) out.SetConstantsUsed(C_COLORS+2,C_COLORS+2); if (cc.d == TEVCOLORARG_C2 || cc.d == TEVCOLORARG_A2 || ac.d == TEVALPHAARG_A2) out.SetConstantsUsed(C_COLORS+3,C_COLORS+3); if (cc.dest >= GX_TEVREG0 && cc.dest <= GX_TEVREG2) out.SetConstantsUsed(C_COLORS+cc.dest, C_COLORS+cc.dest); if (ac.dest >= GX_TEVREG0 && ac.dest <= GX_TEVREG2) out.SetConstantsUsed(C_COLORS+ac.dest, C_COLORS+ac.dest); out.Write("// color combine\n"); if (cc.clamp) out.Write("%s = clamp(", tevCOutputTable[cc.dest]); else out.Write("%s = ", tevCOutputTable[cc.dest]); // combine the color channel if (cc.bias != TevBias_COMPARE) // if not compare { //normal color combiner goes here if (cc.shift > TEVSCALE_1) out.Write("%s*(", tevScaleTable[cc.shift]); if(!(cc.d == TEVCOLORARG_ZERO && cc.op == TEVOP_ADD)) out.Write("%s%s", tevCInputTable[cc.d], tevOpTable[cc.op]); if (cc.a == cc.b) out.Write("%s", tevCInputTable[cc.a + 16]); else if (cc.c == TEVCOLORARG_ZERO) out.Write("%s", tevCInputTable[cc.a + 16]); else if (cc.c == TEVCOLORARG_ONE) out.Write("%s", tevCInputTable[cc.b + 16]); else if (cc.a == TEVCOLORARG_ZERO) out.Write("%s*%s", tevCInputTable[cc.b + 16], tevCInputTable[cc.c + 16]); else if (cc.b == TEVCOLORARG_ZERO) out.Write("%s*(float3(1.0f, 1.0f, 1.0f)-%s)", tevCInputTable[cc.a + 16], tevCInputTable[cc.c + 16]); else out.Write("%s(%s, %s, %s)", GLSLConvertFunctions[FUNC_LERP + bOpenGL], tevCInputTable[cc.a + 16], tevCInputTable[cc.b + 16], tevCInputTable[cc.c + 16]); out.Write("%s", tevBiasTable[cc.bias]); if (cc.shift > TEVSCALE_1) out.Write(")"); } else { int cmp = (cc.shift<<1)|cc.op|8; // comparemode stored here out.Write(TEVCMPColorOPTable[cmp],//lookup the function from the op table tevCInputTable[cc.d], tevCInputTable[cc.a + 16], tevCInputTable[cc.b + 16], tevCInputTable[cc.c + 16]); } if (cc.clamp) out.Write(", 0.0, 1.0)"); out.Write(";\n"); RegisterStates[ac.dest].AlphaNeedOverflowControl = (ac.clamp == 0); RegisterStates[ac.dest].AuxStored = false; out.Write("// alpha combine\n"); if (ac.clamp) out.Write("%s = clamp(", tevAOutputTable[ac.dest]); else out.Write("%s = ", tevAOutputTable[ac.dest]); if (ac.bias != TevBias_COMPARE) // if not compare { //normal alpha combiner goes here if (ac.shift > TEVSCALE_1) out.Write("%s*(", tevScaleTable[ac.shift]); if(!(ac.d == TEVALPHAARG_ZERO && ac.op == TEVOP_ADD)) out.Write("%s.a%s", tevAInputTable[ac.d], tevOpTable[ac.op]); if (ac.a == ac.b) out.Write("%s.a", tevAInputTable[ac.a + 8]); else if (ac.c == TEVALPHAARG_ZERO) out.Write("%s.a", tevAInputTable[ac.a + 8]); else if (ac.a == TEVALPHAARG_ZERO) out.Write("%s.a*%s.a", tevAInputTable[ac.b + 8], tevAInputTable[ac.c + 8]); else if (ac.b == TEVALPHAARG_ZERO) out.Write("%s.a*(1.0f-%s.a)", tevAInputTable[ac.a + 8], tevAInputTable[ac.c + 8]); else out.Write("%s(%s.a, %s.a, %s.a)", GLSLConvertFunctions[FUNC_LERP + bOpenGL], tevAInputTable[ac.a + 8], tevAInputTable[ac.b + 8], tevAInputTable[ac.c + 8]); out.Write("%s",tevBiasTable[ac.bias]); if (ac.shift>0) out.Write(")"); } else { //compare alpha combiner goes here int cmp = (ac.shift<<1)|ac.op|8; // comparemode stored here out.Write(TEVCMPAlphaOPTable[cmp], tevAInputTable[ac.d], tevAInputTable[ac.a + 8], tevAInputTable[ac.b + 8], tevAInputTable[ac.c + 8]); } if (ac.clamp) out.Write(", 0.0, 1.0)"); out.Write(";\n\n"); out.Write("// TEV done\n"); } template void SampleTexture(T& out, const char *destination, const char *texcoords, const char *texswap, int texmap, API_TYPE ApiType) { out.SetConstantsUsed(C_TEXDIMS+texmap,C_TEXDIMS+texmap); if (ApiType == API_D3D11) out.Write("%s=Tex%d.Sample(samp%d,%s.xy * " I_TEXDIMS"[%d].xy).%s;\n", destination, texmap,texmap, texcoords, texmap, texswap); else out.Write("%s=%s(samp%d,%s.xy * " I_TEXDIMS"[%d].xy).%s;\n", destination, ApiType == API_OPENGL ? "texture" : "tex2D", texmap, texcoords, texmap, texswap); } static const char *tevAlphaFuncsTable[] = { "(false)", // NEVER "(prev.a <= %s - (0.25f/255.0f))", // LESS "(abs( prev.a - %s ) < (0.5f/255.0f))", // EQUAL "(prev.a < %s + (0.25f/255.0f))", // LEQUAL "(prev.a >= %s + (0.25f/255.0f))", // GREATER "(abs( prev.a - %s ) >= (0.5f/255.0f))", // NEQUAL "(prev.a > %s - (0.25f/255.0f))", // GEQUAL "(true)" // ALWAYS }; static const char *tevAlphaFunclogicTable[] = { " && ", // and " || ", // or " != ", // xor " == " // xnor }; template static void WriteAlphaTest(T& out, pixel_shader_uid_data& uid_data, API_TYPE ApiType, DSTALPHA_MODE dstAlphaMode, bool per_pixel_depth) { static const char *alphaRef[2] = { I_ALPHA"[0].r", I_ALPHA"[0].g" }; out.SetConstantsUsed(C_ALPHA, C_ALPHA); // using discard then return works the same in cg and dx9 but not in dx11 out.Write("\tif(!( "); uid_data.alpha_test_comp0 = bpmem.alpha_test.comp0; uid_data.alpha_test_logic = bpmem.alpha_test.comp1; uid_data.alpha_test_logic = bpmem.alpha_test.logic; // Lookup the first component from the alpha function table int compindex = bpmem.alpha_test.comp0; out.Write(tevAlphaFuncsTable[compindex], alphaRef[0]); out.Write("%s", tevAlphaFunclogicTable[bpmem.alpha_test.logic]);//lookup the logic op // Lookup the second component from the alpha function table compindex = bpmem.alpha_test.comp1; out.Write(tevAlphaFuncsTable[compindex], alphaRef[1]); out.Write(")) {\n"); out.Write("\t\tocol0 = float4(0.0f, 0.0f, 0.0f, 0.0f);\n"); if (dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND) out.Write("\t\tocol1 = float4(0.0f, 0.0f, 0.0f, 0.0f);\n"); if(per_pixel_depth) out.Write("\t\tdepth = 1.f;\n"); // HAXX: zcomploc (aka early_ztest) is a way to control whether depth test is done before // or after texturing and alpha test. PC GPUs have no way to support this // feature properly as of 2012: depth buffer and depth test are not // programmable and the depth test is always done after texturing. // Most importantly, PC GPUs do not allow writing to the z-buffer without // writing a color value (unless color writing is disabled altogether). // We implement "depth test before texturing" by discarding the fragment // when the alpha test fail. This is not a correct implementation because // even if the depth test fails the fragment could be alpha blended, but // we don't have a choice. uid_data.alpha_test_use_zcomploc_hack = bpmem.zcontrol.early_ztest && bpmem.zmode.updateenable; if (!(bpmem.zcontrol.early_ztest && bpmem.zmode.updateenable)) { out.Write("\t\tdiscard;\n"); if (ApiType != API_D3D11) out.Write("\t\treturn;\n"); } out.Write("}\n"); } static const char *tevFogFuncsTable[] = { "", // No Fog "", // ? "", // Linear "", // ? "\tfog = 1.0f - pow(2.0f, -8.0f * fog);\n", // exp "\tfog = 1.0f - pow(2.0f, -8.0f * fog * fog);\n", // exp2 "\tfog = pow(2.0f, -8.0f * (1.0f - fog));\n", // backward exp "\tfog = 1.0f - fog;\n fog = pow(2.0f, -8.0f * fog * fog);\n" // backward exp2 }; template static void WriteFog(T& out, pixel_shader_uid_data& uid_data, API_TYPE ApiType) { bool bOpenGL = ApiType == API_OPENGL; uid_data.fog_fsel = bpmem.fog.c_proj_fsel.fsel; if(bpmem.fog.c_proj_fsel.fsel == 0) return; // no Fog uid_data.fog_proj = bpmem.fog.c_proj_fsel.proj; out.SetConstantsUsed(C_FOG, C_FOG+1); if (bpmem.fog.c_proj_fsel.proj == 0) { // perspective // ze = A/(B - (Zs >> B_SHF) out.Write("\tfloat ze = " I_FOG"[1].x / (" I_FOG"[1].y - (zCoord / " I_FOG"[1].w));\n"); } else { // orthographic // ze = a*Zs (here, no B_SHF) out.Write("\tfloat ze = " I_FOG"[1].x * zCoord;\n"); } // x_adjust = sqrt((x-center)^2 + k^2)/k // ze *= x_adjust // this is completely theoretical as the real hardware seems to use a table intead of calculating the values. uid_data.fog_RangeBaseEnabled = bpmem.fogRange.Base.Enabled; if (bpmem.fogRange.Base.Enabled) { out.SetConstantsUsed(C_FOG+2, C_FOG+2); out.Write("\tfloat x_adjust = (2.0f * (clipPos.x / " I_FOG"[2].y)) - 1.0f - " I_FOG"[2].x;\n"); out.Write("\tx_adjust = sqrt(x_adjust * x_adjust + " I_FOG"[2].z * " I_FOG"[2].z) / " I_FOG"[2].z;\n"); out.Write("\tze *= x_adjust;\n"); } out.Write("\tfloat fog = clamp(ze - " I_FOG"[1].z, 0.0, 1.0);\n"); if (bpmem.fog.c_proj_fsel.fsel > 3) { out.Write("%s", tevFogFuncsTable[bpmem.fog.c_proj_fsel.fsel]); } else { if (bpmem.fog.c_proj_fsel.fsel != 2) WARN_LOG(VIDEO, "Unknown Fog Type! %08x", bpmem.fog.c_proj_fsel.fsel); } out.Write("\tprev.rgb = %s(prev.rgb, " I_FOG"[0].rgb, fog);\n", GLSLConvertFunctions[FUNC_LERP + bOpenGL]); } void GetPixelShaderUid(PixelShaderUid& object, DSTALPHA_MODE dstAlphaMode, API_TYPE ApiType, u32 components) { GeneratePixelShader(object, dstAlphaMode, ApiType, components); } void GeneratePixelShaderCode(PixelShaderCode& object, DSTALPHA_MODE dstAlphaMode, API_TYPE ApiType, u32 components) { GeneratePixelShader(object, dstAlphaMode, ApiType, components); } void GetPixelShaderConstantProfile(PixelShaderConstantProfile& object, DSTALPHA_MODE dstAlphaMode, API_TYPE ApiType, u32 components) { GeneratePixelShader(object, dstAlphaMode, ApiType, components); }