// Copyright 2017 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "DiscIO/NANDImporter.h" #include #include #include "Common/Crypto/AES.h" #include "Common/FileUtil.h" #include "Common/IOFile.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Core/IOS/ES/Formats.h" namespace DiscIO { constexpr size_t NAND_SIZE = 0x20000000; constexpr size_t NAND_KEYS_SIZE = 0x400; NANDImporter::NANDImporter() : m_nand_root(File::GetUserPath(D_WIIROOT_IDX)) { } NANDImporter::~NANDImporter() = default; void NANDImporter::ImportNANDBin(const std::string& path_to_bin, std::function update_callback, std::function get_otp_dump_path) { m_update_callback = std::move(update_callback); if (!ReadNANDBin(path_to_bin, get_otp_dump_path)) return; if (!FindSuperblock()) return; ExportKeys(); ProcessEntry(0, ""); ExtractCertificates(); } bool NANDImporter::ReadNANDBin(const std::string& path_to_bin, std::function get_otp_dump_path) { constexpr size_t NAND_TOTAL_BLOCKS = 0x40000; constexpr size_t NAND_BLOCK_SIZE = 0x800; constexpr size_t NAND_ECC_BLOCK_SIZE = 0x40; constexpr size_t NAND_BIN_SIZE = (NAND_BLOCK_SIZE + NAND_ECC_BLOCK_SIZE) * NAND_TOTAL_BLOCKS; // 0x21000000 File::IOFile file(path_to_bin, "rb"); const u64 image_size = file.GetSize(); if (image_size != NAND_BIN_SIZE + NAND_KEYS_SIZE && image_size != NAND_BIN_SIZE) { PanicAlertFmtT("This file does not look like a BootMii NAND backup."); return false; } m_nand.resize(NAND_SIZE); for (size_t i = 0; i < NAND_TOTAL_BLOCKS; i++) { // Instead of updating on every cycle, we only update every 1000 cycles for a balance between // not updating fast enough vs updating too fast if (i % 1000 == 0) m_update_callback(); file.ReadBytes(&m_nand[i * NAND_BLOCK_SIZE], NAND_BLOCK_SIZE); // We don't care about the ECC blocks file.Seek(NAND_ECC_BLOCK_SIZE, File::SeekOrigin::Current); } m_nand_keys.resize(NAND_KEYS_SIZE); // Read the OTP/SEEPROM dump. // If it is not included in the NAND image, get a path to the dump and read key data from it. if (image_size == NAND_BIN_SIZE) { const std::string otp_dump_path = get_otp_dump_path(); if (otp_dump_path.empty()) return false; File::IOFile keys_file{otp_dump_path, "rb"}; return keys_file.ReadBytes(m_nand_keys.data(), NAND_KEYS_SIZE); } // Otherwise, just read the key data from the NAND image. return file.ReadBytes(m_nand_keys.data(), NAND_KEYS_SIZE); } bool NANDImporter::FindSuperblock() { constexpr size_t NAND_SUPERBLOCK_START = 0x1fc00000; // There are 16 superblocks, choose the highest/newest version for (int i = 0; i < 16; i++) { auto superblock = std::make_unique(); std::memcpy(superblock.get(), &m_nand[NAND_SUPERBLOCK_START + i * sizeof(NANDSuperblock)], sizeof(NANDSuperblock)); if (std::memcmp(superblock->magic, "SFFS", 4) != 0) { ERROR_LOG_FMT(DISCIO, "Superblock #{} does not exist", i); continue; } INFO_LOG_FMT(DISCIO, "Superblock #{} has version {:#x}", i, superblock->version); if (!m_superblock || superblock->version > m_superblock->version) m_superblock = std::move(superblock); } if (!m_superblock) { PanicAlertFmtT("This file does not contain a valid Wii filesystem."); return false; } INFO_LOG_FMT(DISCIO, "Using superblock version {:#x}", m_superblock->version); return true; } std::string NANDImporter::GetPath(const NANDFSTEntry& entry, const std::string& parent_path) { std::string name(entry.name, strnlen(entry.name, sizeof(NANDFSTEntry::name))); if (name.front() == '/' || parent_path.back() == '/') return parent_path + name; return parent_path + '/' + name; } void NANDImporter::ProcessEntry(u16 entry_number, const std::string& parent_path) { while (entry_number != 0xffff) { const NANDFSTEntry entry = m_superblock->fst[entry_number]; const std::string path = GetPath(entry, parent_path); INFO_LOG_FMT(DISCIO, "Entry: {} Path: {}", entry, path); m_update_callback(); Type type = static_cast(entry.mode & 3); if (type == Type::File) { std::vector data = GetEntryData(entry); File::IOFile file(m_nand_root + path, "wb"); file.WriteBytes(data.data(), data.size()); } else if (type == Type::Directory) { File::CreateDir(m_nand_root + path); ProcessEntry(entry.sub, path); } else { ERROR_LOG_FMT(DISCIO, "Ignoring unknown entry type for {}", entry); } entry_number = entry.sib; } } std::vector NANDImporter::GetEntryData(const NANDFSTEntry& entry) { constexpr size_t NAND_FAT_BLOCK_SIZE = 0x4000; u16 sub = entry.sub; size_t remaining_bytes = entry.size; std::vector data{}; data.reserve(remaining_bytes); auto block = std::make_unique(NAND_FAT_BLOCK_SIZE); while (remaining_bytes > 0) { m_aes_ctx->CryptIvZero(&m_nand[NAND_FAT_BLOCK_SIZE * sub], block.get(), NAND_FAT_BLOCK_SIZE); size_t size = std::min(remaining_bytes, NAND_FAT_BLOCK_SIZE); data.insert(data.end(), block.get(), block.get() + size); remaining_bytes -= size; sub = m_superblock->fat[sub]; } return data; } bool NANDImporter::ExtractCertificates() { const std::string content_dir = m_nand_root + "/title/00000001/0000000d/content/"; File::IOFile tmd_file(content_dir + "title.tmd", "rb"); std::vector tmd_bytes(tmd_file.GetSize()); if (!tmd_file.ReadBytes(tmd_bytes.data(), tmd_bytes.size())) { ERROR_LOG_FMT(DISCIO, "ExtractCertificates: Could not read IOS13 TMD"); return false; } IOS::ES::TMDReader tmd(std::move(tmd_bytes)); IOS::ES::Content content_metadata; if (!tmd.GetContent(tmd.GetBootIndex(), &content_metadata)) { ERROR_LOG_FMT(DISCIO, "ExtractCertificates: Could not get content ID from TMD"); return false; } File::IOFile content_file(content_dir + fmt::format("{:08x}.app", content_metadata.id), "rb"); std::vector content_bytes(content_file.GetSize()); if (!content_file.ReadBytes(content_bytes.data(), content_bytes.size())) { ERROR_LOG_FMT(DISCIO, "ExtractCertificates: Could not read IOS13 contents"); return false; } struct PEMCertificate { std::string_view filename; std::array search_bytes; }; static constexpr std::array certificates{{ {"/clientca.pem", {{0x30, 0x82, 0x03, 0xE9}}}, {"/clientcakey.pem", {{0x30, 0x82, 0x02, 0x5D}}}, {"/rootca.pem", {{0x30, 0x82, 0x03, 0x7D}}}, }}; for (const PEMCertificate& certificate : certificates) { const auto search_result = std::search(content_bytes.begin(), content_bytes.end(), certificate.search_bytes.begin(), certificate.search_bytes.end()); if (search_result == content_bytes.end()) { ERROR_LOG_FMT(DISCIO, "ExtractCertificates: Could not find offset for certficate '{}'", certificate.filename); return false; } const std::string pem_file_path = m_nand_root + std::string(certificate.filename); const ptrdiff_t certificate_offset = std::distance(content_bytes.begin(), search_result); const u16 certificate_size = Common::swap16(&content_bytes[certificate_offset - 2]); INFO_LOG_FMT(DISCIO, "ExtractCertificates: '{}' offset: {:#x} size: {:#x}", certificate.filename, certificate_offset, certificate_size); File::IOFile pem_file(pem_file_path, "wb"); if (!pem_file.WriteBytes(&content_bytes[certificate_offset], certificate_size)) { ERROR_LOG_FMT(DISCIO, "ExtractCertificates: Unable to write to file {}", pem_file_path); return false; } } return true; } void NANDImporter::ExportKeys() { constexpr size_t NAND_AES_KEY_OFFSET = 0x158; m_aes_ctx = Common::AES::CreateContextDecrypt(&m_nand_keys[NAND_AES_KEY_OFFSET]); const std::string file_path = m_nand_root + "/keys.bin"; File::IOFile file(file_path, "wb"); if (!file.WriteBytes(m_nand_keys.data(), NAND_KEYS_SIZE)) PanicAlertFmtT("Unable to write to file {0}", file_path); } } // namespace DiscIO