// Copyright 2015 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "VideoCommon/VertexLoaderX64.h" #include #include #include #include "Common/BitSet.h" #include "Common/CPUDetect.h" #include "Common/Common.h" #include "Common/CommonTypes.h" #include "Common/Intrinsics.h" #include "Common/JitRegister.h" #include "Common/x64ABI.h" #include "Common/x64Emitter.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/DataReader.h" #include "VideoCommon/VertexLoaderManager.h" using namespace Gen; static const X64Reg src_reg = ABI_PARAM1; static const X64Reg dst_reg = ABI_PARAM2; static const X64Reg scratch1 = RAX; static const X64Reg scratch2 = ABI_PARAM3; static const X64Reg scratch3 = ABI_PARAM4; // The remaining number of vertices to be processed. Starts at count - 1, and the final loop has it // at 0. static const X64Reg remaining_reg = R10; static const X64Reg skipped_reg = R11; static const X64Reg base_reg = RBX; static const u8* memory_base_ptr = (u8*)&g_main_cp_state.array_strides; static OpArg MPIC(const void* ptr, X64Reg scale_reg, int scale = SCALE_1) { return MComplex(base_reg, scale_reg, scale, PtrOffset(ptr, memory_base_ptr)); } static OpArg MPIC(const void* ptr) { return MDisp(base_reg, PtrOffset(ptr, memory_base_ptr)); } VertexLoaderX64::VertexLoaderX64(const TVtxDesc& vtx_desc, const VAT& vtx_att) : VertexLoaderBase(vtx_desc, vtx_att) { AllocCodeSpace(4096); ClearCodeSpace(); GenerateVertexLoader(); WriteProtect(); JitRegister::Register(region, GetCodePtr(), "VertexLoaderX64\nVtx desc: \n{}\nVAT:\n{}", vtx_desc, vtx_att); } OpArg VertexLoaderX64::GetVertexAddr(CPArray array, VertexComponentFormat attribute) { OpArg data = MDisp(src_reg, m_src_ofs); if (IsIndexed(attribute)) { int bits = attribute == VertexComponentFormat::Index8 ? 8 : 16; LoadAndSwap(bits, scratch1, data); m_src_ofs += bits / 8; if (array == CPArray::Position) { CMP(bits, R(scratch1), Imm8(-1)); m_skip_vertex = J_CC(CC_E, true); } IMUL(32, scratch1, MPIC(&g_main_cp_state.array_strides[array])); MOV(64, R(scratch2), MPIC(&VertexLoaderManager::cached_arraybases[array])); return MRegSum(scratch1, scratch2); } else { return data; } } void VertexLoaderX64::ReadVertex(OpArg data, VertexComponentFormat attribute, ComponentFormat format, int count_in, int count_out, bool dequantize, u8 scaling_exponent, AttributeFormat* native_format) { static const __m128i shuffle_lut[5][3] = { {_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF00L), // 1x u8 _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF01L, 0xFFFFFF00L), // 2x u8 _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFF02L, 0xFFFFFF01L, 0xFFFFFF00L)}, // 3x u8 {_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x00FFFFFFL), // 1x s8 _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL), // 2x s8 _mm_set_epi32(0xFFFFFFFFL, 0x02FFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL)}, // 3x s8 {_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0001L), // 1x u16 _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0203L, 0xFFFF0001L), // 2x u16 _mm_set_epi32(0xFFFFFFFFL, 0xFFFF0405L, 0xFFFF0203L, 0xFFFF0001L)}, // 3x u16 {_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x0001FFFFL), // 1x s16 _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x0203FFFFL, 0x0001FFFFL), // 2x s16 _mm_set_epi32(0xFFFFFFFFL, 0x0405FFFFL, 0x0203FFFFL, 0x0001FFFFL)}, // 3x s16 {_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x00010203L), // 1x float _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x04050607L, 0x00010203L), // 2x float _mm_set_epi32(0xFFFFFFFFL, 0x08090A0BL, 0x04050607L, 0x00010203L)}, // 3x float }; static const __m128 scale_factors[32] = { _mm_set_ps1(1. / (1u << 0)), _mm_set_ps1(1. / (1u << 1)), _mm_set_ps1(1. / (1u << 2)), _mm_set_ps1(1. / (1u << 3)), _mm_set_ps1(1. / (1u << 4)), _mm_set_ps1(1. / (1u << 5)), _mm_set_ps1(1. / (1u << 6)), _mm_set_ps1(1. / (1u << 7)), _mm_set_ps1(1. / (1u << 8)), _mm_set_ps1(1. / (1u << 9)), _mm_set_ps1(1. / (1u << 10)), _mm_set_ps1(1. / (1u << 11)), _mm_set_ps1(1. / (1u << 12)), _mm_set_ps1(1. / (1u << 13)), _mm_set_ps1(1. / (1u << 14)), _mm_set_ps1(1. / (1u << 15)), _mm_set_ps1(1. / (1u << 16)), _mm_set_ps1(1. / (1u << 17)), _mm_set_ps1(1. / (1u << 18)), _mm_set_ps1(1. / (1u << 19)), _mm_set_ps1(1. / (1u << 20)), _mm_set_ps1(1. / (1u << 21)), _mm_set_ps1(1. / (1u << 22)), _mm_set_ps1(1. / (1u << 23)), _mm_set_ps1(1. / (1u << 24)), _mm_set_ps1(1. / (1u << 25)), _mm_set_ps1(1. / (1u << 26)), _mm_set_ps1(1. / (1u << 27)), _mm_set_ps1(1. / (1u << 28)), _mm_set_ps1(1. / (1u << 29)), _mm_set_ps1(1. / (1u << 30)), _mm_set_ps1(1. / (1u << 31)), }; X64Reg coords = XMM0; const auto write_zfreeze = [&]() { // zfreeze if (native_format == &m_native_vtx_decl.position) { CMP(32, R(remaining_reg), Imm8(3)); FixupBranch dont_store = J_CC(CC_AE); // The position cache is composed of 3 rows of 4 floats each; since each float is 4 bytes, // we need to scale by 4 twice to cover the 4 floats. LEA(32, scratch3, MScaled(remaining_reg, SCALE_4, 0)); MOVUPS(MPIC(VertexLoaderManager::position_cache.data(), scratch3, SCALE_4), coords); SetJumpTarget(dont_store); } else if (native_format == &m_native_vtx_decl.normals[1]) { TEST(32, R(remaining_reg), R(remaining_reg)); FixupBranch dont_store = J_CC(CC_NZ); // For similar reasons, the cached tangent and binormal are 4 floats each MOVUPS(MPIC(VertexLoaderManager::tangent_cache.data()), coords); SetJumpTarget(dont_store); } else if (native_format == &m_native_vtx_decl.normals[2]) { CMP(32, R(remaining_reg), R(remaining_reg)); FixupBranch dont_store = J_CC(CC_NZ); // For similar reasons, the cached tangent and binormal are 4 floats each MOVUPS(MPIC(VertexLoaderManager::binormal_cache.data()), coords); SetJumpTarget(dont_store); } }; int elem_size = GetElementSize(format); int load_bytes = elem_size * count_in; OpArg dest = MDisp(dst_reg, m_dst_ofs); native_format->components = count_out; native_format->enable = true; native_format->offset = m_dst_ofs; native_format->type = ComponentFormat::Float; native_format->integer = false; m_dst_ofs += sizeof(float) * count_out; if (attribute == VertexComponentFormat::Direct) m_src_ofs += load_bytes; if (cpu_info.bSSSE3) { if (load_bytes > 8) MOVDQU(coords, data); else if (load_bytes > 4) MOVQ_xmm(coords, data); else MOVD_xmm(coords, data); PSHUFB(coords, MPIC(&shuffle_lut[u32(format)][count_in - 1])); // Sign-extend. if (format == ComponentFormat::Byte) PSRAD(coords, 24); if (format == ComponentFormat::Short) PSRAD(coords, 16); } else { // SSE2 X64Reg temp = XMM1; switch (format) { case ComponentFormat::UByte: MOVD_xmm(coords, data); PXOR(temp, R(temp)); PUNPCKLBW(coords, R(temp)); PUNPCKLWD(coords, R(temp)); break; case ComponentFormat::Byte: MOVD_xmm(coords, data); PUNPCKLBW(coords, R(coords)); PUNPCKLWD(coords, R(coords)); PSRAD(coords, 24); break; case ComponentFormat::UShort: case ComponentFormat::Short: switch (count_in) { case 1: LoadAndSwap(32, scratch3, data); MOVD_xmm(coords, R(scratch3)); // ......X. break; case 2: LoadAndSwap(32, scratch3, data); MOVD_xmm(coords, R(scratch3)); // ......XY PSHUFLW(coords, R(coords), 0x24); // ....Y.X. break; case 3: LoadAndSwap(64, scratch3, data); MOVQ_xmm(coords, R(scratch3)); // ....XYZ. PUNPCKLQDQ(coords, R(coords)); // ..Z.XYZ. PSHUFLW(coords, R(coords), 0xAC); // ..Z.Y.X. break; } if (format == ComponentFormat::Short) PSRAD(coords, 16); else PSRLD(coords, 16); break; case ComponentFormat::Float: // Floats don't need to be scaled or converted, // so we can just load/swap/store them directly // and return early. // (In SSSE3 we still need to store them.) for (int i = 0; i < count_in; i++) { LoadAndSwap(32, scratch3, data); MOV(32, dest, R(scratch3)); data.AddMemOffset(sizeof(float)); dest.AddMemOffset(sizeof(float)); // zfreeze if (native_format == &m_native_vtx_decl.position || native_format == &m_native_vtx_decl.normals[1] || native_format == &m_native_vtx_decl.normals[2]) { if (cpu_info.bSSE4_1) { PINSRD(coords, R(scratch3), i); } else { PINSRW(coords, R(scratch3), 2 * i + 0); SHR(32, R(scratch3), Imm8(16)); PINSRW(coords, R(scratch3), 2 * i + 1); } } } write_zfreeze(); } } if (format != ComponentFormat::Float) { CVTDQ2PS(coords, R(coords)); if (dequantize && scaling_exponent) MULPS(coords, MPIC(&scale_factors[scaling_exponent])); } switch (count_out) { case 1: MOVSS(dest, coords); break; case 2: MOVLPS(dest, coords); break; case 3: MOVUPS(dest, coords); break; } write_zfreeze(); } void VertexLoaderX64::ReadColor(OpArg data, VertexComponentFormat attribute, ColorFormat format) { int load_bytes = 0; switch (format) { case ColorFormat::RGB888: case ColorFormat::RGB888x: case ColorFormat::RGBA8888: MOV(32, R(scratch1), data); if (format != ColorFormat::RGBA8888) OR(32, R(scratch1), Imm32(0xFF000000)); MOV(32, MDisp(dst_reg, m_dst_ofs), R(scratch1)); load_bytes = format == ColorFormat::RGB888 ? 3 : 4; break; case ColorFormat::RGB565: // RRRRRGGG GGGBBBBB // AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR LoadAndSwap(16, scratch1, data); if (cpu_info.bBMI1 && cpu_info.bBMI2FastParallelBitOps) { MOV(32, R(scratch2), Imm32(0x07C3F7C0)); PDEP(32, scratch3, scratch1, R(scratch2)); MOV(32, R(scratch2), Imm32(0xF8FCF800)); PDEP(32, scratch1, scratch1, R(scratch2)); ANDN(32, scratch2, scratch2, R(scratch3)); OR(32, R(scratch1), R(scratch2)); } else { SHL(32, R(scratch1), Imm8(11)); LEA(32, scratch2, MScaled(scratch1, SCALE_4, 0)); LEA(32, scratch3, MScaled(scratch2, SCALE_8, 0)); AND(32, R(scratch1), Imm32(0x0000F800)); AND(32, R(scratch2), Imm32(0x00FC0000)); AND(32, R(scratch3), Imm32(0xF8000000)); OR(32, R(scratch1), R(scratch2)); OR(32, R(scratch1), R(scratch3)); MOV(32, R(scratch2), R(scratch1)); SHR(32, R(scratch1), Imm8(5)); AND(32, R(scratch1), Imm32(0x07000700)); OR(32, R(scratch1), R(scratch2)); SHR(32, R(scratch2), Imm8(6)); AND(32, R(scratch2), Imm32(0x00030000)); OR(32, R(scratch1), R(scratch2)); } OR(32, R(scratch1), Imm32(0x000000FF)); SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1); load_bytes = 2; break; case ColorFormat::RGBA4444: // RRRRGGGG BBBBAAAA // AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR LoadAndSwap(16, scratch1, data); if (cpu_info.bBMI2FastParallelBitOps) { MOV(32, R(scratch2), Imm32(0x0F0F0F0F)); PDEP(32, scratch1, scratch1, R(scratch2)); } else { MOV(32, R(scratch2), R(scratch1)); SHL(32, R(scratch1), Imm8(8)); OR(32, R(scratch1), R(scratch2)); AND(32, R(scratch1), Imm32(0x00FF00FF)); MOV(32, R(scratch2), R(scratch1)); SHL(32, R(scratch1), Imm8(4)); OR(32, R(scratch1), R(scratch2)); AND(32, R(scratch1), Imm32(0x0F0F0F0F)); } MOV(32, R(scratch2), R(scratch1)); SHL(32, R(scratch1), Imm8(4)); OR(32, R(scratch1), R(scratch2)); SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1); load_bytes = 2; break; case ColorFormat::RGBA6666: // RRRRRRGG GGGGBBBB BBAAAAAA // AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR data.AddMemOffset(-1); // subtract one from address so we can use a 32bit load and bswap LoadAndSwap(32, scratch1, data); if (cpu_info.bBMI2FastParallelBitOps) { MOV(32, R(scratch2), Imm32(0xFCFCFCFC)); PDEP(32, scratch1, scratch1, R(scratch2)); MOV(32, R(scratch2), R(scratch1)); } else { LEA(32, scratch2, MScaled(scratch1, SCALE_4, 0)); // ______RR RRRRGGGG GGBBBBBB AAAAAA__ AND(32, R(scratch2), Imm32(0x00003FFC)); // ________ ________ __BBBBBB AAAAAA__ SHL(32, R(scratch1), Imm8(6)); // __RRRRRR GGGGGGBB BBBBAAAA AA______ AND(32, R(scratch1), Imm32(0x3FFC0000)); // __RRRRRR GGGGGG__ ________ ________ OR(32, R(scratch1), R(scratch2)); // __RRRRRR GGGGGG__ __BBBBBB AAAAAA__ LEA(32, scratch2, MScaled(scratch1, SCALE_4, 0)); // RRRRRRGG GGGG____ BBBBBBAA AAAA____ AND(32, R(scratch2), Imm32(0xFC00FC00)); // RRRRRR__ ________ BBBBBB__ ________ AND(32, R(scratch1), Imm32(0x00FC00FC)); // ________ GGGGGG__ ________ AAAAAA__ OR(32, R(scratch1), R(scratch2)); // RRRRRR__ GGGGGG__ BBBBBB__ AAAAAA__ MOV(32, R(scratch2), R(scratch1)); } SHR(32, R(scratch1), Imm8(6)); AND(32, R(scratch1), Imm32(0x03030303)); OR(32, R(scratch1), R(scratch2)); SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1); load_bytes = 3; break; } if (attribute == VertexComponentFormat::Direct) m_src_ofs += load_bytes; } void VertexLoaderX64::GenerateVertexLoader() { BitSet32 regs = {src_reg, dst_reg, scratch1, scratch2, scratch3, remaining_reg, skipped_reg, base_reg}; regs &= ABI_ALL_CALLEE_SAVED; ABI_PushRegistersAndAdjustStack(regs, 0); // Backup count since we're going to count it down. PUSH(32, R(ABI_PARAM3)); // ABI_PARAM3 is one of the lower registers, so free it for scratch2. // We also have it end at a value of 0, to simplify indexing for zfreeze; // this requires subtracting 1 at the start. LEA(32, remaining_reg, MDisp(ABI_PARAM3, -1)); MOV(64, R(base_reg), R(ABI_PARAM4)); if (IsIndexed(m_VtxDesc.low.Position)) XOR(32, R(skipped_reg), R(skipped_reg)); // TODO: load constants into registers outside the main loop const u8* loop_start = GetCodePtr(); if (m_VtxDesc.low.PosMatIdx) { MOVZX(32, 8, scratch1, MDisp(src_reg, m_src_ofs)); AND(32, R(scratch1), Imm8(0x3F)); MOV(32, MDisp(dst_reg, m_dst_ofs), R(scratch1)); // zfreeze CMP(32, R(remaining_reg), Imm8(3)); FixupBranch dont_store = J_CC(CC_AE); MOV(32, MPIC(VertexLoaderManager::position_matrix_index_cache.data(), remaining_reg, SCALE_4), R(scratch1)); SetJumpTarget(dont_store); m_native_vtx_decl.posmtx.components = 4; m_native_vtx_decl.posmtx.enable = true; m_native_vtx_decl.posmtx.offset = m_dst_ofs; m_native_vtx_decl.posmtx.type = ComponentFormat::UByte; m_native_vtx_decl.posmtx.integer = true; m_src_ofs += sizeof(u8); m_dst_ofs += sizeof(u32); } std::array texmatidx_ofs; for (size_t i = 0; i < m_VtxDesc.low.TexMatIdx.Size(); i++) { if (m_VtxDesc.low.TexMatIdx[i]) texmatidx_ofs[i] = m_src_ofs++; } OpArg data = GetVertexAddr(CPArray::Position, m_VtxDesc.low.Position); int pos_elements = m_VtxAttr.g0.PosElements == CoordComponentCount::XY ? 2 : 3; ReadVertex(data, m_VtxDesc.low.Position, m_VtxAttr.g0.PosFormat, pos_elements, pos_elements, m_VtxAttr.g0.ByteDequant, m_VtxAttr.g0.PosFrac, &m_native_vtx_decl.position); if (m_VtxDesc.low.Normal != VertexComponentFormat::NotPresent) { static constexpr Common::EnumMap(7)> SCALE_MAP = {7, 6, 15, 14, 0, 0, 0, 0}; const u8 scaling_exponent = SCALE_MAP[m_VtxAttr.g0.NormalFormat]; // Normal data = GetVertexAddr(CPArray::Normal, m_VtxDesc.low.Normal); ReadVertex(data, m_VtxDesc.low.Normal, m_VtxAttr.g0.NormalFormat, 3, 3, true, scaling_exponent, &m_native_vtx_decl.normals[0]); if (m_VtxAttr.g0.NormalElements == NormalComponentCount::NTB) { const bool index3 = IsIndexed(m_VtxDesc.low.Normal) && m_VtxAttr.g0.NormalIndex3; const int elem_size = GetElementSize(m_VtxAttr.g0.NormalFormat); const int load_bytes = elem_size * 3; // Tangent // If in Index3 mode, and indexed components are used, replace the index with a new index. if (index3) data = GetVertexAddr(CPArray::Normal, m_VtxDesc.low.Normal); // The tangent comes after the normal; even in index3 mode, this offset is applied. // Note that this is different from adding 1 to the index, as the stride for indices may be // different from the size of the tangent itself. data.AddMemOffset(load_bytes); ReadVertex(data, m_VtxDesc.low.Normal, m_VtxAttr.g0.NormalFormat, 3, 3, true, scaling_exponent, &m_native_vtx_decl.normals[1]); // Undo the offset above so that data points to the normal instead of the tangent. // This way, we can add 2*elem_size below to always point to the binormal, even if we replace // data with a new index (which would point to the normal). data.AddMemOffset(-load_bytes); // Binormal if (index3) data = GetVertexAddr(CPArray::Normal, m_VtxDesc.low.Normal); data.AddMemOffset(load_bytes * 2); ReadVertex(data, m_VtxDesc.low.Normal, m_VtxAttr.g0.NormalFormat, 3, 3, true, scaling_exponent, &m_native_vtx_decl.normals[2]); } } for (u8 i = 0; i < m_VtxDesc.low.Color.Size(); i++) { if (m_VtxDesc.low.Color[i] != VertexComponentFormat::NotPresent) { data = GetVertexAddr(CPArray::Color0 + i, m_VtxDesc.low.Color[i]); ReadColor(data, m_VtxDesc.low.Color[i], m_VtxAttr.GetColorFormat(i)); m_native_vtx_decl.colors[i].components = 4; m_native_vtx_decl.colors[i].enable = true; m_native_vtx_decl.colors[i].offset = m_dst_ofs; m_native_vtx_decl.colors[i].type = ComponentFormat::UByte; m_native_vtx_decl.colors[i].integer = false; m_dst_ofs += 4; } } for (u8 i = 0; i < m_VtxDesc.high.TexCoord.Size(); i++) { int elements = m_VtxAttr.GetTexElements(i) == TexComponentCount::ST ? 2 : 1; if (m_VtxDesc.high.TexCoord[i] != VertexComponentFormat::NotPresent) { data = GetVertexAddr(CPArray::TexCoord0 + i, m_VtxDesc.high.TexCoord[i]); u8 scaling_exponent = m_VtxAttr.GetTexFrac(i); ReadVertex(data, m_VtxDesc.high.TexCoord[i], m_VtxAttr.GetTexFormat(i), elements, m_VtxDesc.low.TexMatIdx[i] ? 2 : elements, m_VtxAttr.g0.ByteDequant, scaling_exponent, &m_native_vtx_decl.texcoords[i]); } if (m_VtxDesc.low.TexMatIdx[i]) { m_native_vtx_decl.texcoords[i].components = 3; m_native_vtx_decl.texcoords[i].enable = true; m_native_vtx_decl.texcoords[i].type = ComponentFormat::Float; m_native_vtx_decl.texcoords[i].integer = false; MOVZX(64, 8, scratch1, MDisp(src_reg, texmatidx_ofs[i])); if (m_VtxDesc.high.TexCoord[i] != VertexComponentFormat::NotPresent) { CVTSI2SS(XMM0, R(scratch1)); MOVSS(MDisp(dst_reg, m_dst_ofs), XMM0); m_dst_ofs += sizeof(float); } else { m_native_vtx_decl.texcoords[i].offset = m_dst_ofs; PXOR(XMM0, R(XMM0)); CVTSI2SS(XMM0, R(scratch1)); SHUFPS(XMM0, R(XMM0), 0x45); // 000X -> 0X00 MOVUPS(MDisp(dst_reg, m_dst_ofs), XMM0); m_dst_ofs += sizeof(float) * 3; } } } // Prepare for the next vertex. ADD(64, R(dst_reg), Imm32(m_dst_ofs)); const u8* cont = GetCodePtr(); ADD(64, R(src_reg), Imm32(m_src_ofs)); SUB(32, R(remaining_reg), Imm8(1)); J_CC(CC_AE, loop_start); // Get the original count. POP(32, R(ABI_RETURN)); ABI_PopRegistersAndAdjustStack(regs, 0); if (IsIndexed(m_VtxDesc.low.Position)) { SUB(32, R(ABI_RETURN), R(skipped_reg)); RET(); SetJumpTarget(m_skip_vertex); ADD(32, R(skipped_reg), Imm8(1)); JMP(cont); } else { RET(); } ASSERT(m_vertex_size == m_src_ofs); m_native_vtx_decl.stride = m_dst_ofs; } int VertexLoaderX64::RunVertices(DataReader src, DataReader dst, int count) { m_numLoadedVertices += count; return ((int (*)(u8*, u8*, int, const void*))region)(src.GetPointer(), dst.GetPointer(), count, memory_base_ptr); }