// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include #include #include #include #include "Common/Common.h" #include "Common/StringUtil.h" #include "InputCommon/ControlReference/ExpressionParser.h" #include "InputCommon/ControlReference/FunctionExpression.h" namespace ciface::ExpressionParser { using namespace ciface::Core; Token::Token(TokenType type_) : type(type_) { } Token::Token(TokenType type_, std::string data_) : type(type_), data(std::move(data_)) { } bool Token::IsBinaryOperator() const { return type >= TOK_BINARY_OPS_BEGIN && type < TOK_BINARY_OPS_END; } Lexer::Lexer(std::string expr_) : expr(std::move(expr_)) { it = expr.begin(); } std::string Lexer::FetchDelimString(char delim) { const std::string result = FetchCharsWhile([delim](char c) { return c != delim; }); if (it != expr.end()) ++it; return result; } std::string Lexer::FetchWordChars() { // Valid word characters: std::regex rx(R"([a-z\d_])", std::regex_constants::icase); return FetchCharsWhile([&rx](char c) { return std::regex_match(std::string(1, c), rx); }); } Token Lexer::GetDelimitedLiteral() { return Token(TOK_LITERAL, FetchDelimString('\'')); } Token Lexer::GetVariable() { return Token(TOK_VARIABLE, FetchWordChars()); } Token Lexer::GetFullyQualifiedControl() { return Token(TOK_CONTROL, FetchDelimString('`')); } Token Lexer::GetBareword(char first_char) { return Token(TOK_BAREWORD, first_char + FetchWordChars()); } Token Lexer::GetRealLiteral(char first_char) { std::string value; value += first_char; value += FetchCharsWhile([](char c) { return isdigit(c, std::locale::classic()) || ('.' == c); }); if (std::regex_match(value, std::regex(R"(\d+(\.\d+)?)"))) return Token(TOK_LITERAL, value); return Token(TOK_INVALID); } Token Lexer::PeekToken() { const auto old_it = it; const auto tok = NextToken(); it = old_it; return tok; } Token Lexer::NextToken() { if (it == expr.end()) return Token(TOK_EOF); char c = *it++; switch (c) { case ' ': case '\t': case '\n': case '\r': return Token(TOK_WHITESPACE); case '(': return Token(TOK_LPAREN); case ')': return Token(TOK_RPAREN); case '&': return Token(TOK_AND); case '|': return Token(TOK_OR); case '!': return Token(TOK_NOT); case '+': return Token(TOK_ADD); case '-': return Token(TOK_SUB); case '*': return Token(TOK_MUL); case '/': return Token(TOK_DIV); case '%': return Token(TOK_MOD); case '=': return Token(TOK_ASSIGN); case '<': return Token(TOK_LTHAN); case '>': return Token(TOK_GTHAN); case ',': return Token(TOK_COMMA); case '^': return Token(TOK_XOR); case '\'': return GetDelimitedLiteral(); case '$': return GetVariable(); case '`': return GetFullyQualifiedControl(); default: if (isalpha(c, std::locale::classic())) return GetBareword(c); else if (isdigit(c, std::locale::classic())) return GetRealLiteral(c); else return Token(TOK_INVALID); } } ParseStatus Lexer::Tokenize(std::vector& tokens) { while (true) { const std::size_t string_position = it - expr.begin(); Token tok = NextToken(); tok.string_position = string_position; tok.string_length = it - expr.begin(); // Handle /* */ style comments. if (tok.type == TOK_DIV && PeekToken().type == TOK_MUL) { const auto end_of_comment = expr.find("*/", it - expr.begin()); if (end_of_comment == std::string::npos) return ParseStatus::SyntaxError; tok.type = TOK_COMMENT; tok.string_length = end_of_comment + 4; it = expr.begin() + end_of_comment + 2; } tokens.push_back(tok); if (tok.type == TOK_INVALID) return ParseStatus::SyntaxError; if (tok.type == TOK_EOF) break; } return ParseStatus::Successful; } class ControlExpression : public Expression { public: // Keep a shared_ptr to the device so the control pointer doesn't become invalid. std::shared_ptr m_device; explicit ControlExpression(ControlQualifier qualifier_) : qualifier(qualifier_) {} ControlState GetValue() const override { if (!input) return 0.0; // Note: Inputs may return negative values in situations where opposing directions are // activated. We clamp off the negative values here. // FYI: Clamping values greater than 1.0 is purposely not done to support unbounded values in // the future. (e.g. raw accelerometer/gyro data) return std::max(0.0, input->GetState()); } void SetValue(ControlState value) override { if (output) output->SetState(value); } int CountNumControls() const override { return (input || output) ? 1 : 0; } void UpdateReferences(ControlEnvironment& env) override { m_device = env.FindDevice(qualifier); input = env.FindInput(qualifier); output = env.FindOutput(qualifier); } private: ControlQualifier qualifier; Device::Input* input = nullptr; Device::Output* output = nullptr; }; class BinaryExpression : public Expression { public: TokenType op; std::unique_ptr lhs; std::unique_ptr rhs; BinaryExpression(TokenType op_, std::unique_ptr&& lhs_, std::unique_ptr&& rhs_) : op(op_), lhs(std::move(lhs_)), rhs(std::move(rhs_)) { } ControlState GetValue() const override { switch (op) { case TOK_AND: return std::min(lhs->GetValue(), rhs->GetValue()); case TOK_OR: return std::max(lhs->GetValue(), rhs->GetValue()); case TOK_ADD: return lhs->GetValue() + rhs->GetValue(); case TOK_SUB: return lhs->GetValue() - rhs->GetValue(); case TOK_MUL: return lhs->GetValue() * rhs->GetValue(); case TOK_DIV: { const ControlState result = lhs->GetValue() / rhs->GetValue(); return std::isinf(result) ? 0.0 : result; } case TOK_MOD: { const ControlState result = std::fmod(lhs->GetValue(), rhs->GetValue()); return std::isnan(result) ? 0.0 : result; } case TOK_ASSIGN: { lhs->SetValue(rhs->GetValue()); return lhs->GetValue(); } case TOK_LTHAN: return lhs->GetValue() < rhs->GetValue(); case TOK_GTHAN: return lhs->GetValue() > rhs->GetValue(); case TOK_COMMA: { // Eval and discard lhs: lhs->GetValue(); return rhs->GetValue(); } case TOK_XOR: { const auto lval = lhs->GetValue(); const auto rval = rhs->GetValue(); return std::max(std::min(1 - lval, rval), std::min(lval, 1 - rval)); } default: assert(false); return 0; } } void SetValue(ControlState value) override { // Don't do anything special with the op we have. // Treat "A & B" the same as "A | B". lhs->SetValue(value); rhs->SetValue(value); } int CountNumControls() const override { return lhs->CountNumControls() + rhs->CountNumControls(); } void UpdateReferences(ControlEnvironment& env) override { lhs->UpdateReferences(env); rhs->UpdateReferences(env); } }; class LiteralExpression : public Expression { public: void SetValue(ControlState) override { // Do nothing. } int CountNumControls() const override { return 1; } void UpdateReferences(ControlEnvironment&) override { // Nothing needed. } protected: virtual std::string GetName() const = 0; }; class LiteralReal : public LiteralExpression { public: LiteralReal(ControlState value) : m_value(value) {} ControlState GetValue() const override { return m_value; } std::string GetName() const override { return ValueToString(m_value); } private: const ControlState m_value{}; }; ParseResult MakeLiteralExpression(Token token) { ControlState val{}; if (TryParse(token.data, &val)) return ParseResult::MakeSuccessfulResult(std::make_unique(val)); else return ParseResult::MakeErrorResult(token, _trans("Invalid literal.")); } class VariableExpression : public Expression { public: VariableExpression(std::string name) : m_name(name) {} ControlState GetValue() const override { return *m_value_ptr; } void SetValue(ControlState value) override { *m_value_ptr = value; } int CountNumControls() const override { return 1; } void UpdateReferences(ControlEnvironment& env) override { m_value_ptr = env.GetVariablePtr(m_name); } protected: const std::string m_name; ControlState* m_value_ptr{}; }; // This class proxies all methods to its either left-hand child if it has bound controls, or its // right-hand child. Its intended use is for supporting old-style barewords expressions. class CoalesceExpression : public Expression { public: CoalesceExpression(std::unique_ptr&& lhs, std::unique_ptr&& rhs) : m_lhs(std::move(lhs)), m_rhs(std::move(rhs)) { } ControlState GetValue() const override { return GetActiveChild()->GetValue(); } void SetValue(ControlState value) override { GetActiveChild()->SetValue(value); } int CountNumControls() const override { return GetActiveChild()->CountNumControls(); } void UpdateReferences(ControlEnvironment& env) override { m_lhs->UpdateReferences(env); m_rhs->UpdateReferences(env); } private: const std::unique_ptr& GetActiveChild() const { return m_lhs->CountNumControls() > 0 ? m_lhs : m_rhs; } std::unique_ptr m_lhs; std::unique_ptr m_rhs; }; std::shared_ptr ControlEnvironment::FindDevice(ControlQualifier qualifier) const { if (qualifier.has_device) return container.FindDevice(qualifier.device_qualifier); else return container.FindDevice(default_device); } Device::Input* ControlEnvironment::FindInput(ControlQualifier qualifier) const { const std::shared_ptr device = FindDevice(qualifier); if (!device) return nullptr; return device->FindInput(qualifier.control_name); } Device::Output* ControlEnvironment::FindOutput(ControlQualifier qualifier) const { const std::shared_ptr device = FindDevice(qualifier); if (!device) return nullptr; return device->FindOutput(qualifier.control_name); } ControlState* ControlEnvironment::GetVariablePtr(const std::string& name) { return &m_variables[name]; } ParseResult ParseResult::MakeEmptyResult() { ParseResult result; result.status = ParseStatus::EmptyExpression; return result; } ParseResult ParseResult::MakeSuccessfulResult(std::unique_ptr&& expr) { ParseResult result; result.status = ParseStatus::Successful; result.expr = std::move(expr); return result; } ParseResult ParseResult::MakeErrorResult(Token token, std::string description) { ParseResult result; result.status = ParseStatus::SyntaxError; result.token = std::move(token); result.description = std::move(description); return result; } class Parser { public: explicit Parser(const std::vector& tokens_) : tokens(tokens_) { m_it = tokens.begin(); } ParseResult Parse() { ParseResult result = ParseToplevel(); if (ParseStatus::Successful != result.status) return result; if (Peek().type == TOK_EOF) return result; return ParseResult::MakeErrorResult(Peek(), _trans("Expected end of expression.")); } private: const std::vector& tokens; std::vector::const_iterator m_it; Token Chew() { const Token tok = Peek(); if (TOK_EOF != tok.type) ++m_it; return tok; } Token Peek() { return *m_it; } bool Expects(TokenType type) { Token tok = Chew(); return tok.type == type; } ParseResult ParseFunctionArguments(const std::string_view& func_name, std::unique_ptr&& func, const Token& func_tok) { std::vector> args; if (TOK_LPAREN != Peek().type) { // Single argument with no parens (useful for unary ! function) const auto tok = Chew(); auto arg = ParseAtom(tok); if (ParseStatus::Successful != arg.status) return arg; args.emplace_back(std::move(arg.expr)); } else { // Chew the L-Paren Chew(); // Check for empty argument list: if (TOK_RPAREN == Peek().type) { Chew(); } else { while (true) { // Read one argument. // Grab an expression, but stop at comma. auto arg = ParseBinary(BinaryOperatorPrecedence(TOK_COMMA)); if (ParseStatus::Successful != arg.status) return arg; args.emplace_back(std::move(arg.expr)); // Right paren is the end of our arguments. const Token tok = Chew(); if (TOK_RPAREN == tok.type) break; // Comma before the next argument. if (TOK_COMMA != tok.type) return ParseResult::MakeErrorResult(tok, _trans("Expected comma.")); }; } } const auto argument_validation = func->SetArguments(std::move(args)); if (std::holds_alternative(argument_validation)) { const auto text = std::string(func_name) + '(' + std::get(argument_validation).text + ')'; return ParseResult::MakeErrorResult(func_tok, _trans("Expected arguments: " + text)); } return ParseResult::MakeSuccessfulResult(std::move(func)); } ParseResult ParseAtom(const Token& tok) { switch (tok.type) { case TOK_BAREWORD: { auto func = MakeFunctionExpression(tok.data); if (!func) { // Invalid function, interpret this as a bareword control. Token control_tok(tok); control_tok.type = TOK_CONTROL; return ParseAtom(control_tok); } return ParseFunctionArguments(tok.data, std::move(func), tok); } case TOK_CONTROL: { ControlQualifier cq; cq.FromString(tok.data); return ParseResult::MakeSuccessfulResult(std::make_unique(cq)); } case TOK_NOT: { return ParseFunctionArguments("not", MakeFunctionExpression("not"), tok); } case TOK_LITERAL: { return MakeLiteralExpression(tok); } case TOK_VARIABLE: { return ParseResult::MakeSuccessfulResult(std::make_unique(tok.data)); } case TOK_LPAREN: { return ParseParens(); } case TOK_SUB: { // An atom was expected but we got a subtraction symbol. // Interpret it as a unary minus function. return ParseFunctionArguments("minus", MakeFunctionExpression("minus"), tok); } default: { return ParseResult::MakeErrorResult(tok, _trans("Expected start of expression.")); } } } static int BinaryOperatorPrecedence(TokenType type) { switch (type) { case TOK_MUL: case TOK_DIV: case TOK_MOD: return 1; case TOK_ADD: case TOK_SUB: return 2; case TOK_GTHAN: case TOK_LTHAN: return 3; case TOK_AND: return 4; case TOK_XOR: return 5; case TOK_OR: return 6; case TOK_ASSIGN: return 7; case TOK_COMMA: return 8; default: assert(false); return 0; } } ParseResult ParseBinary(int precedence = 999) { ParseResult lhs = ParseAtom(Chew()); if (lhs.status == ParseStatus::SyntaxError) return lhs; std::unique_ptr expr = std::move(lhs.expr); // TODO: handle LTR/RTL associativity? while (Peek().IsBinaryOperator() && BinaryOperatorPrecedence(Peek().type) < precedence) { const Token tok = Chew(); ParseResult rhs = ParseBinary(BinaryOperatorPrecedence(tok.type)); if (rhs.status == ParseStatus::SyntaxError) { return rhs; } expr = std::make_unique(tok.type, std::move(expr), std::move(rhs.expr)); } return ParseResult::MakeSuccessfulResult(std::move(expr)); } ParseResult ParseParens() { // lparen already chewed ParseResult result = ParseToplevel(); if (result.status != ParseStatus::Successful) return result; const auto rparen = Chew(); if (rparen.type != TOK_RPAREN) { return ParseResult::MakeErrorResult(rparen, _trans("Expected closing paren.")); } return result; } ParseResult ParseToplevel() { return ParseBinary(); } }; // namespace ExpressionParser ParseResult ParseTokens(const std::vector& tokens) { return Parser(tokens).Parse(); } static ParseResult ParseComplexExpression(const std::string& str) { Lexer l(str); std::vector tokens; const ParseStatus tokenize_status = l.Tokenize(tokens); if (tokenize_status != ParseStatus::Successful) return ParseResult::MakeErrorResult(Token(TOK_INVALID), _trans("Tokenizing failed.")); RemoveInertTokens(&tokens); return ParseTokens(tokens); } void RemoveInertTokens(std::vector* tokens) { tokens->erase(std::remove_if(tokens->begin(), tokens->end(), [](const Token& tok) { return tok.type == TOK_COMMENT || tok.type == TOK_WHITESPACE; }), tokens->end()); } static std::unique_ptr ParseBarewordExpression(const std::string& str) { ControlQualifier qualifier; qualifier.control_name = str; qualifier.has_device = false; return std::make_unique(qualifier); } ParseResult ParseExpression(const std::string& str) { if (StripSpaces(str).empty()) return ParseResult::MakeEmptyResult(); auto bareword_expr = ParseBarewordExpression(str); ParseResult complex_result = ParseComplexExpression(str); if (complex_result.status != ParseStatus::Successful) { // This is a bit odd. // Return the error status of the complex expression with the fallback barewords expression. complex_result.expr = std::move(bareword_expr); return complex_result; } complex_result.expr = std::make_unique(std::move(bareword_expr), std::move(complex_result.expr)); return complex_result; } } // namespace ciface::ExpressionParser