// Copyright (C) 2003-2008 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Globals.h" #include #include "Render.h" #include "VertexShader.h" #include "VertexShaderManager.h" #include "VertexLoader.h" #include "BPMemory.h" #include "XFMemory.h" VertexShaderMngr::VSCache VertexShaderMngr::vshaders; VERTEXSHADER* VertexShaderMngr::pShaderLast = NULL; float VertexShaderMngr::rawViewport[6] = {0}; float VertexShaderMngr::rawProjection[7] = {0}; float GC_ALIGNED16(g_fProjectionMatrix[16]); static int s_nMaxVertexInstructions; //////////////////////// // Internal Variables // //////////////////////// static float s_fMaterials[16]; // track changes static bool bTexMatricesChanged[2], bPosNormalMatrixChanged, bProjectionChanged, bViewportChanged; int nMaterialsChanged; static int nTransformMatricesChanged[2]; // min,max static int nNormalMatricesChanged[2]; // min,max static int nPostTransformMatricesChanged[2]; // min,max static int nLightsChanged[2]; // min,max void VertexShaderMngr::SetVSConstant4f(int const_number, float f1, float f2, float f3, float f4) { glProgramEnvParameter4fARB(GL_VERTEX_PROGRAM_ARB, const_number, f1, f2, f3, f4); } void VertexShaderMngr::SetVSConstant4fv(int const_number, const float *f) { glProgramEnvParameter4fvARB(GL_VERTEX_PROGRAM_ARB, const_number, f); } void VertexShaderMngr::Init() { nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1; nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1; nPostTransformMatricesChanged[0] = nPostTransformMatricesChanged[1] = -1; nLightsChanged[0] = nLightsChanged[1] = -1; bTexMatricesChanged[0] = bTexMatricesChanged[1] = false; bPosNormalMatrixChanged = bProjectionChanged = bViewportChanged = false; nMaterialsChanged = 0; memset(&xfregs, 0, sizeof(xfregs)); memset(xfmem, 0, sizeof(xfmem)); glGetProgramivARB(GL_VERTEX_PROGRAM_ARB, GL_MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB, (GLint *)&s_nMaxVertexInstructions); } void VertexShaderMngr::Shutdown() { VSCache::iterator iter = vshaders.begin(); for (;iter!=vshaders.end();iter++) iter->second.Destroy(); vshaders.clear(); } VERTEXSHADER* VertexShaderMngr::GetShader(u32 components) { DVSTARTPROFILE(); VERTEXSHADERUID uid; GetVertexShaderId(uid, components); VSCache::iterator iter = vshaders.find(uid); if (iter != vshaders.end()) { iter->second.frameCount=frameCount; VSCacheEntry &entry = iter->second; if (&entry.shader != pShaderLast) { pShaderLast = &entry.shader; } return pShaderLast; } VSCacheEntry& entry = vshaders[uid]; char *code = GenerateVertexShader(components, Renderer::GetZBufferTarget() != 0); if (!code || !VertexShaderMngr::CompileVertexShader(entry.shader, code)) { ERROR_LOG("failed to create vertex shader\n"); return NULL; } //Make an entry in the table entry.frameCount=frameCount; pShaderLast = &entry.shader; INCSTAT(stats.numVertexShadersCreated); SETSTAT(stats.numVertexShadersAlive,vshaders.size()); return pShaderLast; } void VertexShaderMngr::Cleanup() { VSCache::iterator iter=vshaders.begin(); while (iter != vshaders.end()) { VSCacheEntry &entry = iter->second; if (entry.frameCount < frameCount-200) { entry.Destroy(); #ifdef _WIN32 iter = vshaders.erase(iter); #else vshaders.erase(iter++); #endif } else { ++iter; } } // static int frame = 0; // if( frame++ > 30 ) { // VSCache::iterator iter=vshaders.begin(); // while(iter!=vshaders.end()) { // iter->second.Destroy(); // ++iter; // } // vshaders.clear(); // } SETSTAT(stats.numPixelShadersAlive,vshaders.size()); } bool VertexShaderMngr::CompileVertexShader(VERTEXSHADER& vs, const char* pstrprogram) { char stropt[64]; sprintf(stropt, "MaxLocalParams=256,MaxInstructions=%d", s_nMaxVertexInstructions); #ifdef _WIN32 const char* opts[] = {"-profileopts",stropt,"-O2", "-q", NULL}; #else const char* opts[] = {"-profileopts",stropt,"-q", NULL}; #endif CGprogram tempprog = cgCreateProgram(g_cgcontext, CG_SOURCE, pstrprogram, g_cgvProf, "main", opts); if (!cgIsProgram(tempprog) || cgGetError() != CG_NO_ERROR) { ERROR_LOG("Failed to load vs %s:\n", cgGetLastListing(g_cgcontext)); ERROR_LOG(pstrprogram); return false; } //ERROR_LOG(pstrprogram); //ERROR_LOG("id: %d\n", g_Config.iSaveTargetId); char* pcompiledprog = (char*)cgGetProgramString(tempprog, CG_COMPILED_PROGRAM); char* plocal = strstr(pcompiledprog, "program.local"); while( plocal != NULL ) { const char* penv = " program.env"; memcpy(plocal, penv, 13); plocal = strstr(plocal+13, "program.local"); } glGenProgramsARB( 1, &vs.glprogid ); glBindProgramARB( GL_VERTEX_PROGRAM_ARB, vs.glprogid ); glProgramStringARB( GL_VERTEX_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, (GLsizei)strlen(pcompiledprog), pcompiledprog); GLenum err = GL_NO_ERROR; GL_REPORT_ERROR(); if( err != GL_NO_ERROR ) { ERROR_LOG(pstrprogram); ERROR_LOG(pcompiledprog); } cgDestroyProgram(tempprog); printf("Compiled vertex shader %i\n", vs.glprogid); #ifdef _DEBUG vs.strprog = pstrprogram; #endif return true; } // TODO: this array is misdeclared. Why teh f** does it go through the compilers? const u16 s_mtrltable[16][2] = {0, 0, 0, 1, 1, 1, 0, 2, 2, 1, 0, 3, 1, 2, 0, 3, 3, 1, 0, 4, 1, 3, 0, 4, 2, 2, 0, 4, 1, 3, 0, 4}; /// syncs the shader constant buffers with xfmem void VertexShaderMngr::SetConstants(VERTEXSHADER& vs) { //nTransformMatricesChanged[0] = 0; nTransformMatricesChanged[1] = 256; //nNormalMatricesChanged[0] = 0; nNormalMatricesChanged[1] = 96; //nPostTransformMatricesChanged[0] = 0; nPostTransformMatricesChanged[1] = 256; //nLightsChanged[0] = 0; nLightsChanged[1] = 0x80; //bPosNormalMatrixChanged = true; //bTexMatricesChanged[0] = bTexMatricesChanged[1] = true; //bProjectionChanged = true; // bPosNormalMatrixChanged = bTexMatricesChanged[0] = bTexMatricesChanged[1] = true; // nMaterialsChanged = 15; if (nTransformMatricesChanged[0] >= 0) { int startn = nTransformMatricesChanged[0]/4; int endn = (nTransformMatricesChanged[1]+3)/4; const float* pstart = (const float*)&xfmem[startn*4]; for(int i = startn; i < endn; ++i, pstart += 4) SetVSConstant4fv(C_TRANSFORMMATRICES+i, pstart); nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1; } if (nNormalMatricesChanged[0] >= 0) { int startn = nNormalMatricesChanged[0]/3; int endn = (nNormalMatricesChanged[1]+2)/3; const float* pnstart = (const float*)&xfmem[XFMEM_NORMALMATRICES+3*startn]; for(int i = startn; i < endn; ++i, pnstart += 3) SetVSConstant4fv(C_NORMALMATRICES+i, pnstart); nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1; } if (nPostTransformMatricesChanged[0] >= 0) { int startn = nPostTransformMatricesChanged[0]/4; int endn = (nPostTransformMatricesChanged[1]+3)/4; const float* pstart = (const float*)&xfmem[XFMEM_POSTMATRICES+startn*4]; for(int i = startn; i < endn; ++i, pstart += 4) SetVSConstant4fv(C_POSTTRANSFORMMATRICES+i, pstart); } if (nLightsChanged[0] >= 0) { // lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats int istart = nLightsChanged[0]/0x10; int iend = (nLightsChanged[1]+15)/0x10; const float* xfmemptr = (const float*)&xfmem[0x10*istart+XFMEM_LIGHTS]; for(int i = istart; i < iend; ++i) { u32 color = *(const u32*)(xfmemptr+3); SetVSConstant4f(C_LIGHTS+5*i, ((color>>24)&0xFF)/255.0f, ((color>>16)&0xFF)/255.0f, ((color>>8)&0xFF)/255.0f, ((color)&0xFF)/255.0f); xfmemptr += 4; for(int j = 0; j < 4; ++j, xfmemptr += 3) { if( j == 1 && fabs(xfmemptr[0]) < 0.00001f && fabs(xfmemptr[1]) < 0.00001f && fabs(xfmemptr[2]) < 0.00001f) { // dist atten, make sure not equal to 0!!! SetVSConstant4f(C_LIGHTS+5*i+j+1, 0.00001f, xfmemptr[1], xfmemptr[2], 0); } else SetVSConstant4fv(C_LIGHTS+5*i+j+1, xfmemptr); } } nLightsChanged[0] = nLightsChanged[1] = -1; } if (nMaterialsChanged) { for(int i = 0; i < 4; ++i) { if( nMaterialsChanged&(1<= MatrixIndexA.PosNormalMtxIdx*4 && (u32)start < MatrixIndexA.PosNormalMtxIdx*4+12) || ((u32)start >= XFMEM_NORMALMATRICES+(MatrixIndexA.PosNormalMtxIdx&31)*3 && (u32)start < XFMEM_NORMALMATRICES+(MatrixIndexA.PosNormalMtxIdx&31)*3+9) ) { bPosNormalMatrixChanged = true; } if (((u32)start >= MatrixIndexA.Tex0MtxIdx*4 && (u32)start < MatrixIndexA.Tex0MtxIdx*4+12) || ((u32)start >= MatrixIndexA.Tex1MtxIdx*4 && (u32)start < MatrixIndexA.Tex1MtxIdx*4+12) || ((u32)start >= MatrixIndexA.Tex2MtxIdx*4 && (u32)start < MatrixIndexA.Tex2MtxIdx*4+12) || ((u32)start >= MatrixIndexA.Tex3MtxIdx*4 && (u32)start < MatrixIndexA.Tex3MtxIdx*4+12)) { bTexMatricesChanged[0] = true; } if (((u32)start >= MatrixIndexB.Tex4MtxIdx*4 && (u32)start < MatrixIndexB.Tex4MtxIdx*4+12) || ((u32)start >= MatrixIndexB.Tex5MtxIdx*4 && (u32)start < MatrixIndexB.Tex5MtxIdx*4+12) || ((u32)start >= MatrixIndexB.Tex6MtxIdx*4 && (u32)start < MatrixIndexB.Tex6MtxIdx*4+12) || ((u32)start >= MatrixIndexB.Tex7MtxIdx*4 && (u32)start < MatrixIndexB.Tex7MtxIdx*4+12)) { bTexMatricesChanged[1] = true; } if (start < XFMEM_POSMATRICES_END ) { if (nTransformMatricesChanged[0] == -1) { nTransformMatricesChanged[0] = start; nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end; } else { if (nTransformMatricesChanged[0] > start) nTransformMatricesChanged[0] = start; if (nTransformMatricesChanged[1] < end) nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end; } } if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES ) { int _start = start < XFMEM_NORMALMATRICES ? 0 : start-XFMEM_NORMALMATRICES; int _end = end < XFMEM_NORMALMATRICES_END ? end-XFMEM_NORMALMATRICES : XFMEM_NORMALMATRICES_END-XFMEM_NORMALMATRICES; if (nNormalMatricesChanged[0] == -1 ) { nNormalMatricesChanged[0] = _start; nNormalMatricesChanged[1] = _end; } else { if (nNormalMatricesChanged[0] > _start) nNormalMatricesChanged[0] = _start; if (nNormalMatricesChanged[1] < _end) nNormalMatricesChanged[1] = _end; } } if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES ) { int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start-XFMEM_POSTMATRICES; int _end = end < XFMEM_POSTMATRICES_END ? end-XFMEM_POSTMATRICES : XFMEM_POSTMATRICES_END-XFMEM_POSTMATRICES; if (nPostTransformMatricesChanged[0] == -1 ) { nPostTransformMatricesChanged[0] = _start; nPostTransformMatricesChanged[1] = _end; } else { if (nPostTransformMatricesChanged[0] > _start) nPostTransformMatricesChanged[0] = _start; if (nPostTransformMatricesChanged[1] < _end) nPostTransformMatricesChanged[1] = _end; } } if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS) { int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start-XFMEM_LIGHTS; int _end = end < XFMEM_LIGHTS_END ? end-XFMEM_LIGHTS : XFMEM_LIGHTS_END-XFMEM_LIGHTS; if (nLightsChanged[0] == -1 ) { nLightsChanged[0] = _start; nLightsChanged[1] = _end; } else { if (nLightsChanged[0] > _start) nLightsChanged[0] = _start; if (nLightsChanged[1] < _end) nLightsChanged[1] = _end; } } } void VertexShaderMngr::SetTexMatrixChangedA(u32 Value) { if (MatrixIndexA.Hex != Value) { VertexManager::Flush(); if (MatrixIndexA.PosNormalMtxIdx != (Value&0x3f)) bPosNormalMatrixChanged = true; bTexMatricesChanged[0] = true; MatrixIndexA.Hex = Value; } } void VertexShaderMngr::SetTexMatrixChangedB(u32 Value) { if (MatrixIndexB.Hex != Value) { VertexManager::Flush(); bTexMatricesChanged[1] = true; MatrixIndexB.Hex = Value; } } void VertexShaderMngr::SetViewport(float* _Viewport) { // check for paper mario for (size_t i = 0; i < ARRAYSIZE(rawViewport); ++i) { if( *(u32*)(_Viewport + i) == 0x7f800000 ) return; // invalid number } memcpy(rawViewport, _Viewport, sizeof(rawViewport)); bViewportChanged = true; } void VertexShaderMngr::SetViewportChanged() { bViewportChanged = true; } void VertexShaderMngr::SetProjection(float* _pProjection, int constantIndex) { memcpy(rawProjection, _pProjection, sizeof(rawProjection)); bProjectionChanged = true; } size_t VertexShaderMngr::SaveLoadState(char *ptr, BOOL save) { BEGINSAVELOAD; SAVELOAD(&xfregs,sizeof(xfregs)); SAVELOAD(xfmem,XFMEM_SIZE*sizeof(u32)); SAVELOAD(rawViewport,sizeof(rawViewport)); SAVELOAD(rawProjection,sizeof(rawProjection)); SAVELOAD(&MatrixIndexA,sizeof(TMatrixIndexA)); SAVELOAD(&MatrixIndexB,sizeof(TMatrixIndexB)); if (!save) { // invalidate all InvalidateXFRange(0,0x1000); } ENDSAVELOAD; } // LoadXFReg 0x10 void VertexShaderMngr::LoadXFReg(u32 transferSize, u32 baseAddress, u32 *pData) { u32 address = baseAddress; for (int i=0; i<(int)transferSize; i++) { address = baseAddress + i; // Setup a Matrix if (address < 0x1000) { VertexManager::Flush(); InvalidateXFRange(address, address+transferSize); //PRIM_LOG("xfmem write: 0x%x-0x%x\n", address, address+transferSize); u32* p1 = &xfmem[address]; memcpy_gc(p1, &pData[i], transferSize*4); i += transferSize; } else if (address<0x2000) { u32 data = pData[i]; switch (address) { case 0x1000: // error break; case 0x1001: // diagnostics break; case 0x1002: // internal state 0 break; case 0x1003: // internal state 1 break; case 0x1004: // xf_clock break; case 0x1005: // clipdisable if (data & 1) { // disable clipping detection } if (data & 2) { // disable trivial rejection } if (data & 4) { // disable cpoly clipping acceleration } break; case 0x1006: //SetGPMetric break; case 0x1008: //__GXXfVtxSpecs, wrote 0004 xfregs.hostinfo = *(INVTXSPEC*)&data; break; case 0x1009: //GXSetNumChans (no) if (xfregs.nNumChans != (data&3) ) { VertexManager::Flush(); xfregs.nNumChans = data&3; } break; case 0x100a: //GXSetChanAmbientcolor if (xfregs.colChans[0].ambColor != data) { VertexManager::Flush(); nMaterialsChanged |= 1; xfregs.colChans[0].ambColor = data; s_fMaterials[0] = ((data>>24)&0xFF)/255.0f; s_fMaterials[1] = ((data>>16)&0xFF)/255.0f; s_fMaterials[2] = ((data>>8)&0xFF)/255.0f; s_fMaterials[3] = ((data)&0xFF)/255.0f; } break; case 0x100b: //GXSetChanAmbientcolor if (xfregs.colChans[1].ambColor != data) { VertexManager::Flush(); nMaterialsChanged |= 2; xfregs.colChans[1].ambColor = data; s_fMaterials[4] = ((data>>24)&0xFF)/255.0f; s_fMaterials[5] = ((data>>16)&0xFF)/255.0f; s_fMaterials[6] = ((data>>8)&0xFF)/255.0f; s_fMaterials[7] = ((data)&0xFF)/255.0f; } break; case 0x100c: //GXSetChanMatcolor (rgba) if (xfregs.colChans[0].matColor != data) { VertexManager::Flush(); nMaterialsChanged |= 4; xfregs.colChans[0].matColor = data; s_fMaterials[8] = ((data>>24)&0xFF)/255.0f; s_fMaterials[9] = ((data>>16)&0xFF)/255.0f; s_fMaterials[10] = ((data>>8)&0xFF)/255.0f; s_fMaterials[11] = ((data)&0xFF)/255.0f; } break; case 0x100d: //GXSetChanMatcolor (rgba) if (xfregs.colChans[1].matColor != data) { VertexManager::Flush(); nMaterialsChanged |= 8; xfregs.colChans[1].matColor = data; s_fMaterials[12] = ((data>>24)&0xFF)/255.0f; s_fMaterials[13] = ((data>>16)&0xFF)/255.0f; s_fMaterials[14] = ((data>>8)&0xFF)/255.0f; s_fMaterials[15] = ((data)&0xFF)/255.0f; } break; case 0x100e: // color0 if (xfregs.colChans[0].color.hex != (data&0x7fff) ) { VertexManager::Flush(); xfregs.colChans[0].color.hex = data; } break; case 0x100f: // color1 if (xfregs.colChans[1].color.hex != (data&0x7fff) ) { VertexManager::Flush(); xfregs.colChans[1].color.hex = data; } break; case 0x1010: // alpha0 if (xfregs.colChans[0].alpha.hex != (data&0x7fff) ) { VertexManager::Flush(); xfregs.colChans[0].alpha.hex = data; } break; case 0x1011: // alpha1 if (xfregs.colChans[1].alpha.hex != (data&0x7fff) ) { VertexManager::Flush(); xfregs.colChans[1].alpha.hex = data; } break; case 0x1012: // dual tex transform if (xfregs.bEnableDualTexTransform != (data&1)) { VertexManager::Flush(); xfregs.bEnableDualTexTransform = data&1; } break; case 0x1013: case 0x1014: case 0x1015: case 0x1016: case 0x1017: DEBUG_LOG("xf addr: %x=%x\n", address, data); break; case 0x1018: //_assert_msg_(GX_XF, 0, "XF matrixindex0"); VertexShaderMngr::SetTexMatrixChangedA(data); //? break; case 0x1019: //_assert_msg_(GX_XF, 0, "XF matrixindex1"); VertexShaderMngr::SetTexMatrixChangedB(data); //? break; case 0x101a: VertexManager::Flush(); VertexShaderMngr::SetViewport((float*)&pData[i]); i += 6; break; case 0x101c: // paper mario writes 16777216.0f, 1677721.75 break; case 0x101f: // paper mario writes 16777216.0f, 5033165.0f break; case 0x1020: VertexManager::Flush(); VertexShaderMngr::SetProjection((float*)&pData[i]); i += 7; return; case 0x103f: // GXSetNumTexGens if (xfregs.numTexGens != data) { VertexManager::Flush(); xfregs.numTexGens = data; } break; case 0x1040: xfregs.texcoords[0].texmtxinfo.hex = data; break; case 0x1041: xfregs.texcoords[1].texmtxinfo.hex = data; break; case 0x1042: xfregs.texcoords[2].texmtxinfo.hex = data; break; case 0x1043: xfregs.texcoords[3].texmtxinfo.hex = data; break; case 0x1044: xfregs.texcoords[4].texmtxinfo.hex = data; break; case 0x1045: xfregs.texcoords[5].texmtxinfo.hex = data; break; case 0x1046: xfregs.texcoords[6].texmtxinfo.hex = data; break; case 0x1047: xfregs.texcoords[7].texmtxinfo.hex = data; break; case 0x1048: case 0x1049: case 0x104a: case 0x104b: case 0x104c: case 0x104d: case 0x104e: case 0x104f: DEBUG_LOG("xf addr: %x=%x\n", address, data); break; case 0x1050: xfregs.texcoords[0].postmtxinfo.hex = data; break; case 0x1051: xfregs.texcoords[1].postmtxinfo.hex = data; break; case 0x1052: xfregs.texcoords[2].postmtxinfo.hex = data; break; case 0x1053: xfregs.texcoords[3].postmtxinfo.hex = data; break; case 0x1054: xfregs.texcoords[4].postmtxinfo.hex = data; break; case 0x1055: xfregs.texcoords[5].postmtxinfo.hex = data; break; case 0x1056: xfregs.texcoords[6].postmtxinfo.hex = data; break; case 0x1057: xfregs.texcoords[7].postmtxinfo.hex = data; break; default: DEBUG_LOG("xf addr: %x=%x\n", address, data); break; } } else if (address>=0x4000) { // MessageBox(NULL, "1", "1", MB_OK); //4010 __GXSetGenMode } } } // Check docs for this sucker... void VertexShaderMngr::LoadIndexedXF(u32 val, int array) { int index = val>>16; int address = val&0xFFF; //check mask int size = ((val>>12)&0xF)+1; //load stuff from array to address in xf mem VertexManager::Flush(); InvalidateXFRange(address, address+size); //PRIM_LOG("xfmem iwrite: 0x%x-0x%x\n", address, address+size); for (int i = 0; i < size; i++) xfmem[address + i] = Memory_Read_U32(arraybases[array] + arraystrides[array]*index + i*4); } float* VertexShaderMngr::GetPosNormalMat() { return (float*)xfmem + MatrixIndexA.PosNormalMtxIdx * 4; } void VertexShaderMngr::GetVertexShaderId(VERTEXSHADERUID& id, u32 components) { u32 zbufrender = (bpmem.ztex2.op==ZTEXTURE_ADD)||Renderer::GetZBufferTarget()!=0; id.values[0] = components|(xfregs.numTexGens<<23)|(xfregs.nNumChans<<27)|((u32)xfregs.bEnableDualTexTransform<<29)|(zbufrender<<30); for(int i = 0; i < 2; ++i) { id.values[1+i] = xfregs.colChans[i].color.enablelighting?(u32)xfregs.colChans[i].color.hex:(u32)xfregs.colChans[i].color.matsource; id.values[1+i] |= (xfregs.colChans[i].alpha.enablelighting?(u32)xfregs.colChans[i].alpha.hex:(u32)xfregs.colChans[i].alpha.matsource)<<15; } // fog id.values[1] |= (((u32)bpmem.fog.c_proj_fsel.fsel&3)<<30); id.values[2] |= (((u32)bpmem.fog.c_proj_fsel.fsel>>2)<<30); u32* pcurvalue = &id.values[3]; for(int i = 0; i < xfregs.numTexGens; ++i) { TexMtxInfo tinfo = xfregs.texcoords[i].texmtxinfo; if( tinfo.texgentype != XF_TEXGEN_EMBOSS_MAP ) tinfo.hex &= 0x7ff; if( tinfo.texgentype != XF_TEXGEN_REGULAR ) tinfo.projection = 0; u32 val = ((tinfo.hex>>1)&0x1ffff); if( xfregs.bEnableDualTexTransform && tinfo.texgentype == XF_TEXGEN_REGULAR ) { // rewrite normalization and post index val |= ((u32)xfregs.texcoords[i].postmtxinfo.index<<17)|((u32)xfregs.texcoords[i].postmtxinfo.normalize<<23); } switch(i & 3) { case 0: pcurvalue[0] |= val; break; case 1: pcurvalue[0] |= val<<24; pcurvalue[1] = val>>8; ++pcurvalue; break; case 2: pcurvalue[0] |= val<<16; pcurvalue[1] = val>>16; ++pcurvalue; break; case 3: pcurvalue[0] |= val<<8; ++pcurvalue; break; } } }