// Copyright 2008 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "VideoCommon/PixelShaderManager.h" #include #include "Common/ChunkFile.h" #include "Common/CommonTypes.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" bool PixelShaderManager::s_bFogRangeAdjustChanged; bool PixelShaderManager::s_bViewPortChanged; bool PixelShaderManager::s_bIndirectDirty; bool PixelShaderManager::s_bDestAlphaDirty; PixelShaderConstants PixelShaderManager::constants; bool PixelShaderManager::dirty; void PixelShaderManager::Init() { constants = {}; // Init any intial constants which aren't zero when bpmem is zero. s_bFogRangeAdjustChanged = true; s_bViewPortChanged = false; SetIndMatrixChanged(0); SetIndMatrixChanged(1); SetIndMatrixChanged(2); SetZTextureTypeChanged(); SetTexCoordChanged(0); SetTexCoordChanged(1); SetTexCoordChanged(2); SetTexCoordChanged(3); SetTexCoordChanged(4); SetTexCoordChanged(5); SetTexCoordChanged(6); SetTexCoordChanged(7); // fixed Konstants for (int component = 0; component < 4; component++) { constants.konst[0][component] = 255; // 1 constants.konst[1][component] = 223; // 7/8 constants.konst[2][component] = 191; // 3/4 constants.konst[3][component] = 159; // 5/8 constants.konst[4][component] = 128; // 1/2 constants.konst[5][component] = 96; // 3/8 constants.konst[6][component] = 64; // 1/4 constants.konst[7][component] = 32; // 1/8 // Invalid Konstants (reads as zero on hardware) constants.konst[8][component] = 0; constants.konst[9][component] = 0; constants.konst[10][component] = 0; constants.konst[11][component] = 0; // Annoyingly, alpha reads zero values for the .rgb colors (offically // defined as invalid) // If it wasn't for this, we could just use one of the first 3 colunms // instead of // wasting an entire 4th column just for alpha. if (component == 3) { constants.konst[12][component] = 0; constants.konst[13][component] = 0; constants.konst[14][component] = 0; constants.konst[15][component] = 0; } } dirty = true; } void PixelShaderManager::Dirty() { // This function is called after a savestate is loaded. // Any constants that can changed based on settings should be re-calculated s_bFogRangeAdjustChanged = true; SetEfbScaleChanged(g_renderer->EFBToScaledXf(1), g_renderer->EFBToScaledYf(1)); SetFogParamChanged(); dirty = true; } void PixelShaderManager::SetConstants() { if (s_bFogRangeAdjustChanged) { // set by two components, so keep changed flag here // TODO: try to split both registers and move this logic to the shader if (!g_ActiveConfig.bDisableFog && bpmem.fogRange.Base.Enabled == 1) { // bpmem.fogRange.Base.Center : center of the viewport in x axis. observation: // bpmem.fogRange.Base.Center = realcenter + 342; int center = ((u32)bpmem.fogRange.Base.Center) - 342; // normalize center to make calculations easy float ScreenSpaceCenter = center / (2.0f * xfmem.viewport.wd); ScreenSpaceCenter = (ScreenSpaceCenter * 2.0f) - 1.0f; // bpmem.fogRange.K seems to be a table of precalculated coefficients for the adjust factor // observations: bpmem.fogRange.K[0].LO appears to be the lowest value and // bpmem.fogRange.K[4].HI the largest // they always seems to be larger than 256 so my theory is : // they are the coefficients from the center to the border of the screen // so to simplify I use the hi coefficient as K in the shader taking 256 as the scale // TODO: Shouldn't this be EFBToScaledXf? constants.fogf[2] = ScreenSpaceCenter; constants.fogf[3] = static_cast(g_renderer->EFBToScaledX(static_cast(2.0f * xfmem.viewport.wd))); for (size_t i = 0, vec_index = 0; i < std::size(bpmem.fogRange.K); i++) { constexpr float scale = 4.0f; constants.fogrange[vec_index / 4][vec_index % 4] = bpmem.fogRange.K[i].GetValue(0) * scale; vec_index++; constants.fogrange[vec_index / 4][vec_index % 4] = bpmem.fogRange.K[i].GetValue(1) * scale; vec_index++; } } else { constants.fogf[2] = 0; constants.fogf[3] = 1; } dirty = true; s_bFogRangeAdjustChanged = false; } if (s_bViewPortChanged) { constants.zbias[1][0] = (s32)xfmem.viewport.farZ; constants.zbias[1][1] = (s32)xfmem.viewport.zRange; dirty = true; s_bViewPortChanged = false; } if (s_bIndirectDirty) { for (int i = 0; i < 4; i++) constants.pack1[i][3] = 0; for (u32 i = 0; i < (bpmem.genMode.numtevstages + 1); ++i) { // Note: a tevind of zero just happens to be a passthrough, so no need // to set an extra bit. Furthermore, wrap and add to previous apply even if there is no // indirect stage. constants.pack1[i][2] = bpmem.tevind[i].hex; u32 stage = bpmem.tevind[i].bt; // We use an extra bit (1 << 16) to provide a fast way of testing if this feature is in use. // Note also that this is indexed by indirect stage, not by TEV stage. if (bpmem.tevind[i].IsActive() && stage < bpmem.genMode.numindstages) constants.pack1[stage][3] = bpmem.tevindref.getTexCoord(stage) | bpmem.tevindref.getTexMap(stage) << 8 | 1 << 16; } dirty = true; s_bIndirectDirty = false; } if (s_bDestAlphaDirty) { // Destination alpha is only enabled if alpha writes are enabled. Force entire uniform to zero // when disabled. u32 dstalpha = bpmem.blendmode.alphaupdate && bpmem.dstalpha.enable && bpmem.zcontrol.pixel_format == PixelFormat::RGBA6_Z24 ? bpmem.dstalpha.hex : 0; if (constants.dstalpha != dstalpha) { constants.dstalpha = dstalpha; dirty = true; } } } void PixelShaderManager::SetTevColor(int index, int component, s32 value) { auto& c = constants.colors[index]; c[component] = value; dirty = true; PRIM_LOG("tev color{}: {} {} {} {}", index, c[0], c[1], c[2], c[3]); } void PixelShaderManager::SetTevKonstColor(int index, int component, s32 value) { auto& c = constants.kcolors[index]; c[component] = value; dirty = true; // Konst for ubershaders. We build the whole array on cpu so the gpu can do a single indirect // access. if (component != 3) // Alpha doesn't included in the .rgb konsts constants.konst[index + 12][component] = value; // .rrrr .gggg .bbbb .aaaa konsts constants.konst[index + 16 + component * 4][0] = value; constants.konst[index + 16 + component * 4][1] = value; constants.konst[index + 16 + component * 4][2] = value; constants.konst[index + 16 + component * 4][3] = value; PRIM_LOG("tev konst color{}: {} {} {} {}", index, c[0], c[1], c[2], c[3]); } void PixelShaderManager::SetTevOrder(int index, u32 order) { if (constants.pack2[index][0] != order) { constants.pack2[index][0] = order; dirty = true; } } void PixelShaderManager::SetTevKSel(int index, u32 ksel) { if (constants.pack2[index][1] != ksel) { constants.pack2[index][1] = ksel; dirty = true; } } void PixelShaderManager::SetTevCombiner(int index, int alpha, u32 combiner) { if (constants.pack1[index][alpha] != combiner) { constants.pack1[index][alpha] = combiner; dirty = true; } } void PixelShaderManager::SetTevIndirectChanged() { s_bIndirectDirty = true; } void PixelShaderManager::SetAlpha() { constants.alpha[0] = bpmem.alpha_test.ref0; constants.alpha[1] = bpmem.alpha_test.ref1; constants.alpha[3] = static_cast(bpmem.dstalpha.alpha); dirty = true; } void PixelShaderManager::SetAlphaTestChanged() { // Force alphaTest Uniform to zero if it will always pass. // (set an extra bit to distinguish from "never && never") // TODO: we could optimize this further and check the actual constants, // i.e. "a <= 0" and "a >= 255" will always pass. u32 alpha_test = bpmem.alpha_test.TestResult() != AlphaTestResult::Pass ? bpmem.alpha_test.hex | 1 << 31 : 0; if (constants.alphaTest != alpha_test) { constants.alphaTest = alpha_test; dirty = true; } } void PixelShaderManager::SetDestAlphaChanged() { s_bDestAlphaDirty = true; } void PixelShaderManager::SetTexDims(int texmapid, u32 width, u32 height) { // TODO: move this check out to callee. There we could just call this function on texture changes // or better, use textureSize() in glsl if (constants.texdims[texmapid][0] != width || constants.texdims[texmapid][1] != height) dirty = true; constants.texdims[texmapid][0] = width; constants.texdims[texmapid][1] = height; } void PixelShaderManager::SetZTextureBias() { constants.zbias[1][3] = bpmem.ztex1.bias; dirty = true; } void PixelShaderManager::SetViewportChanged() { s_bViewPortChanged = true; s_bFogRangeAdjustChanged = true; // TODO: Shouldn't be necessary with an accurate fog range adjust implementation } void PixelShaderManager::SetEfbScaleChanged(float scalex, float scaley) { constants.efbscale[0] = 1.0f / scalex; constants.efbscale[1] = 1.0f / scaley; dirty = true; } void PixelShaderManager::SetZSlope(float dfdx, float dfdy, float f0) { constants.zslope[0] = dfdx; constants.zslope[1] = dfdy; constants.zslope[2] = f0; dirty = true; } void PixelShaderManager::SetIndTexScaleChanged(bool high) { constants.indtexscale[high][0] = bpmem.texscale[high].ss0; constants.indtexscale[high][1] = bpmem.texscale[high].ts0; constants.indtexscale[high][2] = bpmem.texscale[high].ss1; constants.indtexscale[high][3] = bpmem.texscale[high].ts1; dirty = true; } void PixelShaderManager::SetIndMatrixChanged(int matrixidx) { const u8 scale = bpmem.indmtx[matrixidx].GetScale(); // xyz - static matrix // w - dynamic matrix scale / 128 constants.indtexmtx[2 * matrixidx][0] = bpmem.indmtx[matrixidx].col0.ma; constants.indtexmtx[2 * matrixidx][1] = bpmem.indmtx[matrixidx].col1.mc; constants.indtexmtx[2 * matrixidx][2] = bpmem.indmtx[matrixidx].col2.me; constants.indtexmtx[2 * matrixidx][3] = 17 - scale; constants.indtexmtx[2 * matrixidx + 1][0] = bpmem.indmtx[matrixidx].col0.mb; constants.indtexmtx[2 * matrixidx + 1][1] = bpmem.indmtx[matrixidx].col1.md; constants.indtexmtx[2 * matrixidx + 1][2] = bpmem.indmtx[matrixidx].col2.mf; constants.indtexmtx[2 * matrixidx + 1][3] = 17 - scale; dirty = true; PRIM_LOG("indmtx{}: scale={}, mat=({} {} {}; {} {} {})", matrixidx, scale, bpmem.indmtx[matrixidx].col0.ma, bpmem.indmtx[matrixidx].col1.mc, bpmem.indmtx[matrixidx].col2.me, bpmem.indmtx[matrixidx].col0.mb, bpmem.indmtx[matrixidx].col1.md, bpmem.indmtx[matrixidx].col2.mf); } void PixelShaderManager::SetZTextureTypeChanged() { switch (bpmem.ztex2.type) { case ZTexFormat::U8: constants.zbias[0][0] = 0; constants.zbias[0][1] = 0; constants.zbias[0][2] = 0; constants.zbias[0][3] = 1; break; case ZTexFormat::U16: constants.zbias[0][0] = 1; constants.zbias[0][1] = 0; constants.zbias[0][2] = 0; constants.zbias[0][3] = 256; break; case ZTexFormat::U24: constants.zbias[0][0] = 65536; constants.zbias[0][1] = 256; constants.zbias[0][2] = 1; constants.zbias[0][3] = 0; break; default: PanicAlertFmt("Invalid ztex format {}", bpmem.ztex2.type); break; } dirty = true; } void PixelShaderManager::SetZTextureOpChanged() { constants.ztex_op = bpmem.ztex2.op; dirty = true; } void PixelShaderManager::SetTexCoordChanged(u8 texmapid) { TCoordInfo& tc = bpmem.texcoords[texmapid]; constants.texdims[texmapid][2] = tc.s.scale_minus_1 + 1; constants.texdims[texmapid][3] = tc.t.scale_minus_1 + 1; dirty = true; } void PixelShaderManager::SetFogColorChanged() { if (g_ActiveConfig.bDisableFog) return; constants.fogcolor[0] = bpmem.fog.color.r; constants.fogcolor[1] = bpmem.fog.color.g; constants.fogcolor[2] = bpmem.fog.color.b; dirty = true; } void PixelShaderManager::SetFogParamChanged() { if (!g_ActiveConfig.bDisableFog) { constants.fogf[0] = bpmem.fog.GetA(); constants.fogf[1] = bpmem.fog.GetC(); constants.fogi[1] = bpmem.fog.b_magnitude; constants.fogi[3] = bpmem.fog.b_shift; constants.fogParam3 = bpmem.fog.c_proj_fsel.hex; } else { constants.fogf[0] = 0.f; constants.fogf[1] = 0.f; constants.fogi[1] = 1; constants.fogi[3] = 1; constants.fogParam3 = 0; } dirty = true; } void PixelShaderManager::SetFogRangeAdjustChanged() { if (g_ActiveConfig.bDisableFog) return; s_bFogRangeAdjustChanged = true; if (constants.fogRangeBase != bpmem.fogRange.Base.hex) { constants.fogRangeBase = bpmem.fogRange.Base.hex; dirty = true; } } void PixelShaderManager::SetGenModeChanged() { constants.genmode = bpmem.genMode.hex; s_bIndirectDirty = true; dirty = true; } void PixelShaderManager::SetZModeControl() { u32 late_ztest = bpmem.UseLateDepthTest(); u32 rgba6_format = (bpmem.zcontrol.pixel_format == PixelFormat::RGBA6_Z24 && !g_ActiveConfig.bForceTrueColor) ? 1 : 0; u32 dither = rgba6_format && bpmem.blendmode.dither; if (constants.late_ztest != late_ztest || constants.rgba6_format != rgba6_format || constants.dither != dither) { constants.late_ztest = late_ztest; constants.rgba6_format = rgba6_format; constants.dither = dither; dirty = true; } s_bDestAlphaDirty = true; } void PixelShaderManager::SetBlendModeChanged() { u32 dither = constants.rgba6_format && bpmem.blendmode.dither; if (constants.dither != dither) { constants.dither = dither; dirty = true; } BlendingState state = {}; state.Generate(bpmem); if (constants.blend_enable != state.blendenable) { constants.blend_enable = state.blendenable; dirty = true; } if (constants.blend_src_factor != state.srcfactor) { constants.blend_src_factor = state.srcfactor; dirty = true; } if (constants.blend_src_factor_alpha != state.srcfactoralpha) { constants.blend_src_factor_alpha = state.srcfactoralpha; dirty = true; } if (constants.blend_dst_factor != state.dstfactor) { constants.blend_dst_factor = state.dstfactor; dirty = true; } if (constants.blend_dst_factor_alpha != state.dstfactoralpha) { constants.blend_dst_factor_alpha = state.dstfactoralpha; dirty = true; } if (constants.blend_subtract != state.subtract) { constants.blend_subtract = state.subtract; dirty = true; } if (constants.blend_subtract_alpha != state.subtractAlpha) { constants.blend_subtract_alpha = state.subtractAlpha; dirty = true; } s_bDestAlphaDirty = true; } void PixelShaderManager::SetBoundingBoxActive(bool active) { const bool enable = active && g_ActiveConfig.bBBoxEnable; if (enable == (constants.bounding_box != 0)) return; constants.bounding_box = active; dirty = true; } void PixelShaderManager::DoState(PointerWrap& p) { p.Do(s_bFogRangeAdjustChanged); p.Do(s_bViewPortChanged); p.Do(s_bIndirectDirty); p.Do(s_bDestAlphaDirty); p.Do(constants); if (p.GetMode() == PointerWrap::MODE_READ) { // Fixup the current state from global GPU state // NOTE: This requires that all GPU memory has been loaded already. Dirty(); } }