// Copyright 2008 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "Common/Hash.h" #include #include #include #include "Common/BitUtils.h" #include "Common/CPUDetect.h" #include "Common/CommonFuncs.h" #include "Common/Intrinsics.h" #ifdef _M_ARM_64 #ifdef _MSC_VER #include #else #include #endif #endif namespace Common { static u64 (*ptrHashFunction)(const u8* src, u32 len, u32 samples) = nullptr; // uint32_t // WARNING - may read one more byte! // Implementation from Wikipedia. u32 HashFletcher(const u8* data_u8, size_t length) { const u16* data = (const u16*)data_u8; /* Pointer to the data to be summed */ size_t len = (length + 1) / 2; /* Length in 16-bit words */ u32 sum1 = 0xffff, sum2 = 0xffff; while (len) { size_t tlen = len > 360 ? 360 : len; len -= tlen; do { sum1 += *data++; sum2 += sum1; } while (--tlen); sum1 = (sum1 & 0xffff) + (sum1 >> 16); sum2 = (sum2 & 0xffff) + (sum2 >> 16); } // Second reduction step to reduce sums to 16 bits sum1 = (sum1 & 0xffff) + (sum1 >> 16); sum2 = (sum2 & 0xffff) + (sum2 >> 16); return (sum2 << 16 | sum1); } // Implementation from Wikipedia // Slightly slower than Fletcher above, but slightly more reliable. // data: Pointer to the data to be summed; len is in bytes u32 HashAdler32(const u8* data, size_t len) { static const u32 MOD_ADLER = 65521; u32 a = 1, b = 0; while (len) { size_t tlen = len > 5550 ? 5550 : len; len -= tlen; do { a += *data++; b += a; } while (--tlen); a = (a & 0xffff) + (a >> 16) * (65536 - MOD_ADLER); b = (b & 0xffff) + (b >> 16) * (65536 - MOD_ADLER); } // It can be shown that a <= 0x1013a here, so a single subtract will do. if (a >= MOD_ADLER) { a -= MOD_ADLER; } // It can be shown that b can reach 0xfff87 here. b = (b & 0xffff) + (b >> 16) * (65536 - MOD_ADLER); if (b >= MOD_ADLER) { b -= MOD_ADLER; } return ((b << 16) | a); } // Stupid hash - but can't go back now :) // Don't use for new things. At least it's reasonably fast. u32 HashEctor(const u8* ptr, size_t length) { u32 crc = 0; for (size_t i = 0; i < length; i++) { crc ^= ptr[i]; crc = (crc << 3) | (crc >> 29); } return (crc); } #if _ARCH_64 //----------------------------------------------------------------------------- // Block read - if your platform needs to do endian-swapping or can only // handle aligned reads, do the conversion here static u64 getblock(const u64* p, int i) { return p[i]; } //---------- // Block mix - combine the key bits with the hash bits and scramble everything static void bmix64(u64& h1, u64& h2, u64& k1, u64& k2, u64& c1, u64& c2) { k1 *= c1; k1 = Common::RotateLeft(k1, 23); k1 *= c2; h1 ^= k1; h1 += h2; h2 = Common::RotateLeft(h2, 41); k2 *= c2; k2 = Common::RotateLeft(k2, 23); k2 *= c1; h2 ^= k2; h2 += h1; h1 = h1 * 3 + 0x52dce729; h2 = h2 * 3 + 0x38495ab5; c1 = c1 * 5 + 0x7b7d159c; c2 = c2 * 5 + 0x6bce6396; } //---------- // Finalization mix - avalanches all bits to within 0.05% bias static u64 fmix64(u64 k) { k ^= k >> 33; k *= 0xff51afd7ed558ccd; k ^= k >> 33; k *= 0xc4ceb9fe1a85ec53; k ^= k >> 33; return k; } static u64 GetMurmurHash3(const u8* src, u32 len, u32 samples) { const u8* data = (const u8*)src; const int nblocks = len / 16; u32 Step = (len / 8); if (samples == 0) samples = std::max(Step, 1u); Step = Step / samples; if (Step < 1) Step = 1; u64 h1 = 0x9368e53c2f6af274; u64 h2 = 0x586dcd208f7cd3fd; u64 c1 = 0x87c37b91114253d5; u64 c2 = 0x4cf5ad432745937f; //---------- // body const u64* blocks = (const u64*)(data); for (int i = 0; i < nblocks; i += Step) { u64 k1 = getblock(blocks, i * 2 + 0); u64 k2 = getblock(blocks, i * 2 + 1); bmix64(h1, h2, k1, k2, c1, c2); } //---------- // tail const u8* tail = (const u8*)(data + nblocks * 16); u64 k1 = 0; u64 k2 = 0; switch (len & 15) { case 15: k2 ^= u64(tail[14]) << 48; case 14: k2 ^= u64(tail[13]) << 40; case 13: k2 ^= u64(tail[12]) << 32; case 12: k2 ^= u64(tail[11]) << 24; case 11: k2 ^= u64(tail[10]) << 16; case 10: k2 ^= u64(tail[9]) << 8; case 9: k2 ^= u64(tail[8]) << 0; case 8: k1 ^= u64(tail[7]) << 56; case 7: k1 ^= u64(tail[6]) << 48; case 6: k1 ^= u64(tail[5]) << 40; case 5: k1 ^= u64(tail[4]) << 32; case 4: k1 ^= u64(tail[3]) << 24; case 3: k1 ^= u64(tail[2]) << 16; case 2: k1 ^= u64(tail[1]) << 8; case 1: k1 ^= u64(tail[0]) << 0; bmix64(h1, h2, k1, k2, c1, c2); }; //---------- // finalization h2 ^= len; h1 += h2; h2 += h1; h1 = fmix64(h1); h2 = fmix64(h2); h1 += h2; return h1; } // CRC32 hash using the SSE4.2 instruction #if defined(_M_X86_64) FUNCTION_TARGET_SSE42 static u64 GetCRC32(const u8* src, u32 len, u32 samples) { u64 h[4] = {len, 0, 0, 0}; u32 Step = (len / 8); const u64* data = (const u64*)src; const u64* end = data + Step; if (samples == 0) samples = std::max(Step, 1u); Step = Step / samples; if (Step < 1) Step = 1; while (data < end - Step * 3) { h[0] = _mm_crc32_u64(h[0], data[Step * 0]); h[1] = _mm_crc32_u64(h[1], data[Step * 1]); h[2] = _mm_crc32_u64(h[2], data[Step * 2]); h[3] = _mm_crc32_u64(h[3], data[Step * 3]); data += Step * 4; } if (data < end - Step * 0) h[0] = _mm_crc32_u64(h[0], data[Step * 0]); if (data < end - Step * 1) h[1] = _mm_crc32_u64(h[1], data[Step * 1]); if (data < end - Step * 2) h[2] = _mm_crc32_u64(h[2], data[Step * 2]); if (len & 7) { u64 temp = 0; memcpy(&temp, end, len & 7); h[0] = _mm_crc32_u64(h[0], temp); } // FIXME: is there a better way to combine these partial hashes? return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32); } #elif defined(_M_ARM_64) static u64 GetCRC32(const u8* src, u32 len, u32 samples) { u64 h[4] = {len, 0, 0, 0}; u32 Step = (len / 8); const u64* data = (const u64*)src; const u64* end = data + Step; if (samples == 0) samples = std::max(Step, 1u); Step = Step / samples; if (Step < 1) Step = 1; while (data < end - Step * 3) { h[0] = __crc32d(h[0], data[Step * 0]); h[1] = __crc32d(h[1], data[Step * 1]); h[2] = __crc32d(h[2], data[Step * 2]); h[3] = __crc32d(h[3], data[Step * 3]); data += Step * 4; } if (data < end - Step * 0) h[0] = __crc32d(h[0], data[Step * 0]); if (data < end - Step * 1) h[1] = __crc32d(h[1], data[Step * 1]); if (data < end - Step * 2) h[2] = __crc32d(h[2], data[Step * 2]); if (len & 7) { u64 temp = 0; memcpy(&temp, end, len & 7); h[0] = __crc32d(h[0], temp); } // FIXME: is there a better way to combine these partial hashes? return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32); } #else static u64 GetCRC32(const u8* src, u32 len, u32 samples) { return 0; } #endif #else // CRC32 hash using the SSE4.2 instruction #if defined(_M_X86) FUNCTION_TARGET_SSE42 static u64 GetCRC32(const u8* src, u32 len, u32 samples) { u32 h = len; u32 Step = (len / 4); const u32* data = (const u32*)src; const u32* end = data + Step; if (samples == 0) samples = std::max(Step, 1u); Step = Step / samples; if (Step < 1) Step = 1; while (data < end) { h = _mm_crc32_u32(h, data[0]); data += Step; } const u8* data2 = (const u8*)end; return (u64)_mm_crc32_u32(h, u32(data2[0])); } #else static u64 GetCRC32(const u8* src, u32 len, u32 samples) { return 0; } #endif //----------------------------------------------------------------------------- // Block read - if your platform needs to do endian-swapping or can only // handle aligned reads, do the conversion here static u32 getblock(const u32* p, int i) { return p[i]; } //---------- // Finalization mix - force all bits of a hash block to avalanche // avalanches all bits to within 0.25% bias static u32 fmix32(u32 h) { h ^= h >> 16; h *= 0x85ebca6b; h ^= h >> 13; h *= 0xc2b2ae35; h ^= h >> 16; return h; } static void bmix32(u32& h1, u32& h2, u32& k1, u32& k2, u32& c1, u32& c2) { k1 *= c1; k1 = Common::RotateLeft(k1, 11); k1 *= c2; h1 ^= k1; h1 += h2; h2 = Common::RotateLeft(h2, 17); k2 *= c2; k2 = Common::RotateLeft(k2, 11); k2 *= c1; h2 ^= k2; h2 += h1; h1 = h1 * 3 + 0x52dce729; h2 = h2 * 3 + 0x38495ab5; c1 = c1 * 5 + 0x7b7d159c; c2 = c2 * 5 + 0x6bce6396; } //---------- static u64 GetMurmurHash3(const u8* src, u32 len, u32 samples) { const u8* data = (const u8*)src; u32 out[2]; const int nblocks = len / 8; u32 Step = (len / 4); if (samples == 0) samples = std::max(Step, 1u); Step = Step / samples; if (Step < 1) Step = 1; u32 h1 = 0x8de1c3ac; u32 h2 = 0xbab98226; u32 c1 = 0x95543787; u32 c2 = 0x2ad7eb25; //---------- // body const u32* blocks = (const u32*)(data + nblocks * 8); for (int i = -nblocks; i < 0; i += Step) { u32 k1 = getblock(blocks, i * 2 + 0); u32 k2 = getblock(blocks, i * 2 + 1); bmix32(h1, h2, k1, k2, c1, c2); } //---------- // tail const u8* tail = (const u8*)(data + nblocks * 8); u32 k1 = 0; u32 k2 = 0; switch (len & 7) { case 7: k2 ^= tail[6] << 16; case 6: k2 ^= tail[5] << 8; case 5: k2 ^= tail[4] << 0; case 4: k1 ^= tail[3] << 24; case 3: k1 ^= tail[2] << 16; case 2: k1 ^= tail[1] << 8; case 1: k1 ^= tail[0] << 0; bmix32(h1, h2, k1, k2, c1, c2); }; //---------- // finalization h2 ^= len; h1 += h2; h2 += h1; h1 = fmix32(h1); h2 = fmix32(h2); h1 += h2; h2 += h1; out[0] = h1; out[1] = h2; return *((u64*)&out); } #endif u64 GetHash64(const u8* src, u32 len, u32 samples) { return ptrHashFunction(src, len, samples); } // sets the hash function used for the texture cache void SetHash64Function() { #if defined(_M_X86_64) || defined(_M_X86) if (cpu_info.bSSE4_2) // sse crc32 version { ptrHashFunction = &GetCRC32; } else #elif defined(_M_ARM_64) if (cpu_info.bCRC32) { ptrHashFunction = &GetCRC32; } else #endif { ptrHashFunction = &GetMurmurHash3; } } u32 ComputeCRC32(std::string_view data) { return ComputeCRC32(reinterpret_cast(data.data()), static_cast(data.size())); } u32 ComputeCRC32(const u8* ptr, u32 length) { return UpdateCRC32(StartCRC32(), ptr, length); } u32 StartCRC32() { return crc32(0L, Z_NULL, 0); } u32 UpdateCRC32(u32 crc, const u8* ptr, u32 length) { static_assert(std::is_same_v); static_assert(std::is_same_v); // Use zlib's crc32 implementation to compute the hash // crc32_z (which takes a size_t) would be better, but it isn't available on Android return crc32(crc, ptr, length); } } // namespace Common