// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Common.h" #include "VideoConfig.h" #include "MathUtil.h" #include #include #include "Statistics.h" #include "VertexShaderGen.h" #include "VertexShaderManager.h" #include "BPMemory.h" #include "CPMemory.h" #include "XFMemory.h" #include "VideoCommon.h" #include "VertexManagerBase.h" static float GC_ALIGNED16(s_fMaterials[16]); float GC_ALIGNED16(g_fProjectionMatrix[16]); // track changes static bool bTexMatricesChanged[2], bPosNormalMatrixChanged, bProjectionChanged, bViewportChanged; static int nMaterialsChanged; static int nTransformMatricesChanged[2]; // min,max static int nNormalMatricesChanged[2]; // min,max static int nPostTransformMatricesChanged[2]; // min,max static int nLightsChanged[2]; // min,max static Matrix33 s_viewRotationMatrix; static Matrix33 s_viewInvRotationMatrix; static float s_fViewTranslationVector[3]; static float s_fViewRotation[2]; void UpdateViewport(); namespace { // Control Variables static ProjectionHack g_ProjHack1; static ProjectionHack g_ProjHack2; static bool g_ProjHack3; } // Namespace float PHackValue(std::string sValue) { float f = 0; bool fp = false; const char *cStr = sValue.c_str(); char *c = new char[strlen(cStr)+1]; std::istringstream sTof(""); for (unsigned int i=0; i<=strlen(cStr); ++i) { if (i == 20) { c[i] = '\0'; break; } c[i] = (cStr[i] == ',') ? '.' : *(cStr+i); if (c[i] == '.') fp = true; } cStr = c; sTof.str(cStr); sTof >> f; if (!fp) f /= 0xF4240; delete [] c; return f; } void UpdateProjectionHack(int iPhackvalue[], std::string sPhackvalue[]) { float fhackvalue1 = 0, fhackvalue2 = 0; float fhacksign1 = 1.0, fhacksign2 = 1.0; bool bProjHack3 = false; const char *sTemp[2]; if (iPhackvalue[0] == 0) goto hackDisabled; NOTICE_LOG(VIDEO, "\t\t--- Ortographic Projection Hack ON ---"); fhacksign1 *= (iPhackvalue[1] == 1) ? -1.0f : fhacksign1; sTemp[0] = (iPhackvalue[1] == 1) ? " * (-1)" : ""; fhacksign2 *= (iPhackvalue[2] == 1) ? -1.0f : fhacksign2; sTemp[1] = (iPhackvalue[2] == 1) ? " * (-1)" : ""; fhackvalue1 = PHackValue(sPhackvalue[0]); NOTICE_LOG(VIDEO, "- zNear Correction = (%f + zNear)%s", fhackvalue1, sTemp[0]); fhackvalue2 = PHackValue(sPhackvalue[1]); NOTICE_LOG(VIDEO, "- zFar Correction = (%f + zFar)%s", fhackvalue2, sTemp[1]); sTemp[0] = "DISABLED"; bProjHack3 = (iPhackvalue[3] == 1) ? true : bProjHack3; if (bProjHack3) sTemp[0] = "ENABLED"; NOTICE_LOG(VIDEO, "- Extra Parameter: %s", sTemp[0]); hackDisabled: // Set the projections hacks g_ProjHack1 = ProjectionHack(fhackvalue1,fhacksign1); g_ProjHack2 = ProjectionHack(fhackvalue2,fhacksign2); g_ProjHack3 = bProjHack3; /* case PROJECTION_HACK_ZELDA_TP_BLOOM_HACK: bPhackvalue1 = 1; bProjHack1 = 1; break; case PROJECTION_HACK_SONIC_AND_THE_BLACK_KNIGHT: bPhackvalue1 = 1; fhackvalue1 = 0.00002f; bPhackvalue2 = 1; fhackvalue2 = 1.999980f; break; case PROJECTION_HACK_BLEACH_VERSUS_CRUSADE: bPhackvalue2 = 1; fhackvalue2 = 0.5f; bPhackvalue1 = 0; bProjHack1 = 0; break; case PROJECTION_HACK_SKIES_OF_ARCADIA: bPhackvalue1 = 1; fhackvalue1 = 0.04f; bPhackvalue2 = 0; bProjHack1 = 0; break; case PROJECTION_HACK_METROID_OTHER_M: //temp fix for black screens during cut scenes bPhackvalue3 = 1; break; // Unused - kept for reference case PROJECTION_HACK_FINAL_FANTASY_CC_ECHO_OF_TIME: bPhackvalue1 = 1; fhackvalue1 = 0.8f; bPhackvalue2 = 1; fhackvalue2 = 1.2f; bProjHack1 = 0; break; case PROJECTION_HACK_HARVESTMOON_MM: bPhackvalue1 = 1; fhackvalue1 = 0.0075f; bPhackvalue2 = 0; bProjHack1 = 0; break; case PROJECTION_HACK_BATEN_KAITOS: bPhackvalue1 = 1; fhackvalue1 = 0.0026f; bPhackvalue2 = 1; fhackvalue2 = 1.9974f; bProjHack1 = 1; break; case PROJECTION_HACK_BATEN_KAITOS_ORIGIN: bPhackvalue1 = 1; fhackvalue1 = 0.0012f; bPhackvalue2 = 1; fhackvalue2 = 1.9988f; bProjHack1 = 1; break; */ } void VertexShaderManager::Init() { Dirty(); memset(&xfregs, 0, sizeof(xfregs)); memset(xfmem, 0, sizeof(xfmem)); ResetView(); } void VertexShaderManager::Shutdown() { } void VertexShaderManager::Dirty() { nTransformMatricesChanged[0] = 0; nTransformMatricesChanged[1] = 256; nNormalMatricesChanged[0] = 0; nNormalMatricesChanged[1] = 96; nPostTransformMatricesChanged[0] = 0; nPostTransformMatricesChanged[1] = 256; nLightsChanged[0] = 0; nLightsChanged[1] = 0x80; bPosNormalMatrixChanged = true; bTexMatricesChanged[0] = bTexMatricesChanged[1] = true; bProjectionChanged = true; bPosNormalMatrixChanged = bTexMatricesChanged[0] = bTexMatricesChanged[1] = true; nMaterialsChanged = 15; } // Syncs the shader constant buffers with xfmem // TODO: A cleaner way to control the matricies without making a mess in the parameters field void VertexShaderManager::SetConstants() { if (nTransformMatricesChanged[0] >= 0) { int startn = nTransformMatricesChanged[0] / 4; int endn = (nTransformMatricesChanged[1] + 3) / 4; const float* pstart = (const float*)&xfmem[startn * 4]; SetMultiVSConstant4fv(C_TRANSFORMMATRICES + startn, endn - startn, pstart); nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1; } if (nNormalMatricesChanged[0] >= 0) { int startn = nNormalMatricesChanged[0] / 3; int endn = (nNormalMatricesChanged[1] + 2) / 3; const float *pnstart = (const float*)&xfmem[XFMEM_NORMALMATRICES+3*startn]; SetMultiVSConstant3fv(C_NORMALMATRICES + startn, endn - startn, pnstart); nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1; } if (nPostTransformMatricesChanged[0] >= 0) { int startn = nPostTransformMatricesChanged[0] / 4; int endn = (nPostTransformMatricesChanged[1] + 3 ) / 4; const float* pstart = (const float*)&xfmem[XFMEM_POSTMATRICES + startn * 4]; SetMultiVSConstant4fv(C_POSTTRANSFORMMATRICES + startn, endn - startn, pstart); } if (nLightsChanged[0] >= 0) { // lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats int istart = nLightsChanged[0] / 0x10; int iend = (nLightsChanged[1] + 15) / 0x10; const float* xfmemptr = (const float*)&xfmem[0x10 * istart + XFMEM_LIGHTS]; for (int i = istart; i < iend; ++i) { u32 color = *(const u32*)(xfmemptr + 3); float NormalizationCoef = 1 / 255.0f; SetVSConstant4f(C_LIGHTS + 5 * i, ((color >> 24) & 0xFF) * NormalizationCoef, ((color >> 16) & 0xFF) * NormalizationCoef, ((color >> 8) & 0xFF) * NormalizationCoef, ((color) & 0xFF) * NormalizationCoef); xfmemptr += 4; for (int j = 0; j < 4; ++j, xfmemptr += 3) { if (j == 1 && fabs(xfmemptr[0]) < 0.00001f && fabs(xfmemptr[1]) < 0.00001f && fabs(xfmemptr[2]) < 0.00001f) { // dist attenuation, make sure not equal to 0!!! SetVSConstant4f(C_LIGHTS+5*i+j+1, 0.00001f, xfmemptr[1], xfmemptr[2], 0); } else SetVSConstant4fv(C_LIGHTS+5*i+j+1, xfmemptr); } } nLightsChanged[0] = nLightsChanged[1] = -1; } if (nMaterialsChanged) { for (int i = 0; i < 4; ++i) if (nMaterialsChanged & (1 << i)) SetVSConstant4fv(C_MATERIALS + i, &s_fMaterials[4 * i]); nMaterialsChanged = 0; } if (bPosNormalMatrixChanged) { bPosNormalMatrixChanged = false; const float *pos = (const float *)xfmem + MatrixIndexA.PosNormalMtxIdx * 4; const float *norm = (const float *)xfmem + XFMEM_NORMALMATRICES + 3 * (MatrixIndexA.PosNormalMtxIdx & 31); SetMultiVSConstant4fv(C_POSNORMALMATRIX, 3, pos); SetMultiVSConstant3fv(C_POSNORMALMATRIX + 3, 3, norm); } if (bTexMatricesChanged[0]) { bTexMatricesChanged[0] = false; const float *fptrs[] = { (const float *)xfmem + MatrixIndexA.Tex0MtxIdx * 4, (const float *)xfmem + MatrixIndexA.Tex1MtxIdx * 4, (const float *)xfmem + MatrixIndexA.Tex2MtxIdx * 4, (const float *)xfmem + MatrixIndexA.Tex3MtxIdx * 4 }; for (int i = 0; i < 4; ++i) { SetMultiVSConstant4fv(C_TEXMATRICES + 3 * i, 3, fptrs[i]); } } if (bTexMatricesChanged[1]) { bTexMatricesChanged[1] = false; const float *fptrs[] = { (const float *)xfmem + MatrixIndexB.Tex4MtxIdx * 4, (const float *)xfmem + MatrixIndexB.Tex5MtxIdx * 4, (const float *)xfmem + MatrixIndexB.Tex6MtxIdx * 4, (const float *)xfmem + MatrixIndexB.Tex7MtxIdx * 4 }; for (int i = 0; i < 4; ++i) { SetMultiVSConstant4fv(C_TEXMATRICES+3 * i + 12, 3, fptrs[i]); } } if (bViewportChanged) { bViewportChanged = false; SetVSConstant4f(C_DEPTHPARAMS,xfregs.rawViewport[5]/ 16777216.0f,xfregs.rawViewport[2]/ 16777216.0f,0.0f,0.0f); // This is so implementation-dependent that we can't have it here. UpdateViewport(); } if (bProjectionChanged) { bProjectionChanged = false; if (xfregs.rawProjection[6] == 0) { // Perspective g_fProjectionMatrix[0] = xfregs.rawProjection[0] * g_ActiveConfig.fAspectRatioHackW; g_fProjectionMatrix[1] = 0.0f; g_fProjectionMatrix[2] = xfregs.rawProjection[1]; g_fProjectionMatrix[3] = 0.0f; g_fProjectionMatrix[4] = 0.0f; g_fProjectionMatrix[5] = xfregs.rawProjection[2] * g_ActiveConfig.fAspectRatioHackH; g_fProjectionMatrix[6] = xfregs.rawProjection[3]; g_fProjectionMatrix[7] = 0.0f; g_fProjectionMatrix[8] = 0.0f; g_fProjectionMatrix[9] = 0.0f; g_fProjectionMatrix[10] = xfregs.rawProjection[4]; g_fProjectionMatrix[11] = xfregs.rawProjection[5]; g_fProjectionMatrix[12] = 0.0f; g_fProjectionMatrix[13] = 0.0f; // donkopunchstania: GC GPU rounds differently? // -(1 + epsilon) so objects are clipped as they are on the real HW g_fProjectionMatrix[14] = -1.00000011921f; g_fProjectionMatrix[15] = 0.0f; SETSTAT_FT(stats.gproj_0, g_fProjectionMatrix[0]); SETSTAT_FT(stats.gproj_1, g_fProjectionMatrix[1]); SETSTAT_FT(stats.gproj_2, g_fProjectionMatrix[2]); SETSTAT_FT(stats.gproj_3, g_fProjectionMatrix[3]); SETSTAT_FT(stats.gproj_4, g_fProjectionMatrix[4]); SETSTAT_FT(stats.gproj_5, g_fProjectionMatrix[5]); SETSTAT_FT(stats.gproj_6, g_fProjectionMatrix[6]); SETSTAT_FT(stats.gproj_7, g_fProjectionMatrix[7]); SETSTAT_FT(stats.gproj_8, g_fProjectionMatrix[8]); SETSTAT_FT(stats.gproj_9, g_fProjectionMatrix[9]); SETSTAT_FT(stats.gproj_10, g_fProjectionMatrix[10]); SETSTAT_FT(stats.gproj_11, g_fProjectionMatrix[11]); SETSTAT_FT(stats.gproj_12, g_fProjectionMatrix[12]); SETSTAT_FT(stats.gproj_13, g_fProjectionMatrix[13]); SETSTAT_FT(stats.gproj_14, g_fProjectionMatrix[14]); SETSTAT_FT(stats.gproj_15, g_fProjectionMatrix[15]); } else { // Orthographic Projection g_fProjectionMatrix[0] = xfregs.rawProjection[0]; g_fProjectionMatrix[1] = 0.0f; g_fProjectionMatrix[2] = 0.0f; g_fProjectionMatrix[3] = xfregs.rawProjection[1]; g_fProjectionMatrix[4] = 0.0f; g_fProjectionMatrix[5] = xfregs.rawProjection[2]; g_fProjectionMatrix[6] = 0.0f; g_fProjectionMatrix[7] = xfregs.rawProjection[3]; g_fProjectionMatrix[8] = 0.0f; g_fProjectionMatrix[9] = 0.0f; //g_fProjectionMatrix[10] = (g_ProjHack1.value + xfregs.rawProjection[4]) * g_ProjHack1.sign; //g_fProjectionMatrix[11] = (g_ProjHack2.value + xfregs.rawProjection[5]) * g_ProjHack2.sign; g_fProjectionMatrix[10] = xfregs.rawProjection[4]; g_fProjectionMatrix[11] = xfregs.rawProjection[5]; g_fProjectionMatrix[12] = 0.0f; g_fProjectionMatrix[13] = 0.0f; /* projection hack for metroid other m...attempt to remove black projection layer from cut scenes. g_fProjectionMatrix[15] = 1.0f was the default setting before this hack was added...setting g_fProjectionMatrix[14] to -1 might make the hack more stable, needs more testing. Only works for OGL and DX9...this is not helping DX11 */ g_fProjectionMatrix[14] = 0.0f; g_fProjectionMatrix[15] = (g_ProjHack3 && xfregs.rawProjection[0] == 2.0f ? 0.0f : 1.0f); //causes either the efb copy or bloom layer not to show if proj hack enabled SETSTAT_FT(stats.g2proj_0, g_fProjectionMatrix[0]); SETSTAT_FT(stats.g2proj_1, g_fProjectionMatrix[1]); SETSTAT_FT(stats.g2proj_2, g_fProjectionMatrix[2]); SETSTAT_FT(stats.g2proj_3, g_fProjectionMatrix[3]); SETSTAT_FT(stats.g2proj_4, g_fProjectionMatrix[4]); SETSTAT_FT(stats.g2proj_5, g_fProjectionMatrix[5]); SETSTAT_FT(stats.g2proj_6, g_fProjectionMatrix[6]); SETSTAT_FT(stats.g2proj_7, g_fProjectionMatrix[7]); SETSTAT_FT(stats.g2proj_8, g_fProjectionMatrix[8]); SETSTAT_FT(stats.g2proj_9, g_fProjectionMatrix[9]); SETSTAT_FT(stats.g2proj_10, g_fProjectionMatrix[10]); SETSTAT_FT(stats.g2proj_11, g_fProjectionMatrix[11]); SETSTAT_FT(stats.g2proj_12, g_fProjectionMatrix[12]); SETSTAT_FT(stats.g2proj_13, g_fProjectionMatrix[13]); SETSTAT_FT(stats.g2proj_14, g_fProjectionMatrix[14]); SETSTAT_FT(stats.g2proj_15, g_fProjectionMatrix[15]); SETSTAT_FT(stats.proj_0, xfregs.rawProjection[0]); SETSTAT_FT(stats.proj_1, xfregs.rawProjection[1]); SETSTAT_FT(stats.proj_2, xfregs.rawProjection[2]); SETSTAT_FT(stats.proj_3, xfregs.rawProjection[3]); SETSTAT_FT(stats.proj_4, xfregs.rawProjection[4]); SETSTAT_FT(stats.proj_5, xfregs.rawProjection[5]); SETSTAT_FT(stats.proj_6, xfregs.rawProjection[6]); } PRIM_LOG("Projection: %f %f %f %f %f %f\n", xfregs.rawProjection[0], xfregs.rawProjection[1], xfregs.rawProjection[2], xfregs.rawProjection[3], xfregs.rawProjection[4], xfregs.rawProjection[5]); if ((g_ActiveConfig.bFreeLook || g_ActiveConfig.bAnaglyphStereo ) && xfregs.rawProjection[6] == 0) { Matrix44 mtxA; Matrix44 mtxB; Matrix44 viewMtx; Matrix44::Translate(mtxA, s_fViewTranslationVector); Matrix44::LoadMatrix33(mtxB, s_viewRotationMatrix); Matrix44::Multiply(mtxB, mtxA, viewMtx); // view = rotation x translation Matrix44::Set(mtxB, g_fProjectionMatrix); Matrix44::Multiply(mtxB, viewMtx, mtxA); // mtxA = projection x view SetMultiVSConstant4fv(C_PROJECTION, 4, &mtxA.data[0]); } else { SetMultiVSConstant4fv(C_PROJECTION, 4, &g_fProjectionMatrix[0]); } } } void VertexShaderManager::InvalidateXFRange(int start, int end) { if (((u32)start >= (u32)MatrixIndexA.PosNormalMtxIdx * 4 && (u32)start < (u32)MatrixIndexA.PosNormalMtxIdx * 4 + 12) || ((u32)start >= XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31) * 3 && (u32)start < XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31) * 3 + 9)) { bPosNormalMatrixChanged = true; } if (((u32)start >= (u32)MatrixIndexA.Tex0MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex0MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexA.Tex1MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex1MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexA.Tex2MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex2MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexA.Tex3MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex3MtxIdx*4+12)) { bTexMatricesChanged[0] = true; } if (((u32)start >= (u32)MatrixIndexB.Tex4MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex4MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexB.Tex5MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex5MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexB.Tex6MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex6MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexB.Tex7MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex7MtxIdx*4+12)) { bTexMatricesChanged[1] = true; } if (start < XFMEM_POSMATRICES_END) { if (nTransformMatricesChanged[0] == -1) { nTransformMatricesChanged[0] = start; nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end; } else { if (nTransformMatricesChanged[0] > start) nTransformMatricesChanged[0] = start; if (nTransformMatricesChanged[1] < end) nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end; } } if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES) { int _start = start < XFMEM_NORMALMATRICES ? 0 : start-XFMEM_NORMALMATRICES; int _end = end < XFMEM_NORMALMATRICES_END ? end-XFMEM_NORMALMATRICES : XFMEM_NORMALMATRICES_END-XFMEM_NORMALMATRICES; if (nNormalMatricesChanged[0] == -1) { nNormalMatricesChanged[0] = _start; nNormalMatricesChanged[1] = _end; } else { if (nNormalMatricesChanged[0] > _start) nNormalMatricesChanged[0] = _start; if (nNormalMatricesChanged[1] < _end) nNormalMatricesChanged[1] = _end; } } if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES) { int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start-XFMEM_POSTMATRICES; int _end = end < XFMEM_POSTMATRICES_END ? end-XFMEM_POSTMATRICES : XFMEM_POSTMATRICES_END-XFMEM_POSTMATRICES; if (nPostTransformMatricesChanged[0] == -1) { nPostTransformMatricesChanged[0] = _start; nPostTransformMatricesChanged[1] = _end; } else { if (nPostTransformMatricesChanged[0] > _start) nPostTransformMatricesChanged[0] = _start; if (nPostTransformMatricesChanged[1] < _end) nPostTransformMatricesChanged[1] = _end; } } if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS) { int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start-XFMEM_LIGHTS; int _end = end < XFMEM_LIGHTS_END ? end-XFMEM_LIGHTS : XFMEM_LIGHTS_END-XFMEM_LIGHTS; if (nLightsChanged[0] == -1 ) { nLightsChanged[0] = _start; nLightsChanged[1] = _end; } else { if (nLightsChanged[0] > _start) nLightsChanged[0] = _start; if (nLightsChanged[1] < _end) nLightsChanged[1] = _end; } } } void VertexShaderManager::SetTexMatrixChangedA(u32 Value) { if (MatrixIndexA.Hex != Value) { VertexManager::Flush(); if (MatrixIndexA.PosNormalMtxIdx != (Value&0x3f)) bPosNormalMatrixChanged = true; bTexMatricesChanged[0] = true; MatrixIndexA.Hex = Value; } } void VertexShaderManager::SetTexMatrixChangedB(u32 Value) { if (MatrixIndexB.Hex != Value) { VertexManager::Flush(); bTexMatricesChanged[1] = true; MatrixIndexB.Hex = Value; } } void VertexShaderManager::SetViewport(float* _Viewport, int constantIndex) { if(constantIndex <= 0) { memcpy(xfregs.rawViewport, _Viewport, sizeof(xfregs.rawViewport)); } else { xfregs.rawViewport[constantIndex] = _Viewport[0]; } bViewportChanged = true; } void VertexShaderManager::SetViewportChanged() { bViewportChanged = true; } void VertexShaderManager::SetProjection(float* _pProjection, int constantIndex) { if(constantIndex <= 0) { memcpy(xfregs.rawProjection, _pProjection, sizeof(xfregs.rawProjection)); } else { xfregs.rawProjection[constantIndex] = _pProjection[0]; } bProjectionChanged = true; } void VertexShaderManager::SetMaterialColor(int index, u32 data) { int ind = index * 4; nMaterialsChanged |= (1 << index); float NormalizationCoef = 1 / 255.0f; s_fMaterials[ind++] = ((data >> 24) & 0xFF) * NormalizationCoef; s_fMaterials[ind++] = ((data >> 16) & 0xFF) * NormalizationCoef; s_fMaterials[ind++] = ((data >> 8) & 0xFF) * NormalizationCoef; s_fMaterials[ind] = ( data & 0xFF) * NormalizationCoef; } void VertexShaderManager::TranslateView(float x, float y) { float result[3]; float vector[3] = { x,0,y }; Matrix33::Multiply(s_viewInvRotationMatrix, vector, result); for (int i = 0; i < 3; i++) s_fViewTranslationVector[i] += result[i]; bProjectionChanged = true; } void VertexShaderManager::RotateView(float x, float y) { s_fViewRotation[0] += x; s_fViewRotation[1] += y; Matrix33 mx; Matrix33 my; Matrix33::RotateX(mx, s_fViewRotation[1]); Matrix33::RotateY(my, s_fViewRotation[0]); Matrix33::Multiply(mx, my, s_viewRotationMatrix); // reverse rotation Matrix33::RotateX(mx, -s_fViewRotation[1]); Matrix33::RotateY(my, -s_fViewRotation[0]); Matrix33::Multiply(my, mx, s_viewInvRotationMatrix); bProjectionChanged = true; } void VertexShaderManager::ResetView() { memset(s_fViewTranslationVector, 0, sizeof(s_fViewTranslationVector)); Matrix33::LoadIdentity(s_viewRotationMatrix); Matrix33::LoadIdentity(s_viewInvRotationMatrix); s_fViewRotation[0] = s_fViewRotation[1] = 0.0f; bProjectionChanged = true; }