// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. // --------------------------------------------------------------------------------------------- // GC graphics pipeline // --------------------------------------------------------------------------------------------- // 3d commands are issued through the fifo. The GPU draws to the 2MB EFB. // The efb can be copied back into ram in two forms: as textures or as XFB. // The XFB is the region in RAM that the VI chip scans out to the television. // So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM. // Next frame, that one is scanned out and the other one gets the copy. = double buffering. // --------------------------------------------------------------------------------------------- #include "VideoCommon/RenderBase.h" #include #include #include #include #include #include #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Event.h" #include "Common/FileUtil.h" #include "Common/Flag.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Common/Profiler.h" #include "Common/StringUtil.h" #include "Common/Thread.h" #include "Common/Timer.h" #include "Core/ConfigManager.h" #include "Core/Core.h" #include "Core/CoreTiming.h" #include "Core/FifoPlayer/FifoRecorder.h" #include "Core/HW/VideoInterface.h" #include "Core/Host.h" #include "Core/Movie.h" #include "VideoCommon/AVIDump.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/CommandProcessor.h" #include "VideoCommon/Debugger.h" #include "VideoCommon/FPSCounter.h" #include "VideoCommon/FramebufferManagerBase.h" #include "VideoCommon/ImageWrite.h" #include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/PixelShaderManager.h" #include "VideoCommon/PostProcessing.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/TextureDecoder.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" // TODO: Move these out of here. int frameCount; int OSDChoice; static int OSDTime; std::unique_ptr g_renderer; // The maximum depth that is written to the depth buffer should never exceed this value. // This is necessary because we use a 2^24 divisor for all our depth values to prevent // floating-point round-trip errors. However the console GPU doesn't ever write a value // to the depth buffer that exceeds 2^24 - 1. const float Renderer::GX_MAX_DEPTH = 16777215.0f / 16777216.0f; static float AspectToWidescreen(float aspect) { return aspect * ((16.0f / 9.0f) / (4.0f / 3.0f)); } Renderer::Renderer(int backbuffer_width, int backbuffer_height) : m_backbuffer_width(backbuffer_width), m_backbuffer_height(backbuffer_height), m_last_efb_scale(g_ActiveConfig.iEFBScale) { FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH); FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT); UpdateActiveConfig(); UpdateDrawRectangle(); CalculateTargetSize(); OSDChoice = 0; OSDTime = 0; } Renderer::~Renderer() { ShutdownFrameDumping(); if (m_frame_dump_thread.joinable()) m_frame_dump_thread.join(); } void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight, float Gamma) { CheckFifoRecording(); if (!fbStride || !fbHeight) return; m_xfb_written = true; if (g_ActiveConfig.bUseXFB) { FramebufferManagerBase::CopyToXFB(xfbAddr, fbStride, fbHeight, sourceRc, Gamma); } else { // The timing is not predictable here. So try to use the XFB path to dump frames. u64 ticks = CoreTiming::GetTicks(); // below div two to convert from bytes to pixels - it expects width, not stride Swap(xfbAddr, fbStride / 2, fbStride / 2, fbHeight, sourceRc, ticks, Gamma); } } int Renderer::EFBToScaledX(int x) { switch (g_ActiveConfig.iEFBScale) { case SCALE_AUTO: // fractional return FramebufferManagerBase::ScaleToVirtualXfbWidth(x, m_target_rectangle); default: return x * (int)m_efb_scale_numeratorX / (int)m_efb_scale_denominatorX; }; } int Renderer::EFBToScaledY(int y) { switch (g_ActiveConfig.iEFBScale) { case SCALE_AUTO: // fractional return FramebufferManagerBase::ScaleToVirtualXfbHeight(y, m_target_rectangle); default: return y * (int)m_efb_scale_numeratorY / (int)m_efb_scale_denominatorY; }; } void Renderer::CalculateTargetScale(int x, int y, int* scaledX, int* scaledY) { if (g_ActiveConfig.iEFBScale == SCALE_AUTO || g_ActiveConfig.iEFBScale == SCALE_AUTO_INTEGRAL) { *scaledX = x; *scaledY = y; } else { *scaledX = x * (int)m_efb_scale_numeratorX / (int)m_efb_scale_denominatorX; *scaledY = y * (int)m_efb_scale_numeratorY / (int)m_efb_scale_denominatorY; } } // return true if target size changed bool Renderer::CalculateTargetSize() { int newEFBWidth, newEFBHeight; newEFBWidth = newEFBHeight = 0; m_last_efb_scale = g_ActiveConfig.iEFBScale; // TODO: Ugly. Clean up switch (m_last_efb_scale) { case SCALE_AUTO: case SCALE_AUTO_INTEGRAL: newEFBWidth = FramebufferManagerBase::ScaleToVirtualXfbWidth(EFB_WIDTH, m_target_rectangle); newEFBHeight = FramebufferManagerBase::ScaleToVirtualXfbHeight(EFB_HEIGHT, m_target_rectangle); if (m_last_efb_scale == SCALE_AUTO_INTEGRAL) { m_efb_scale_numeratorX = m_efb_scale_numeratorY = std::max((newEFBWidth - 1) / EFB_WIDTH + 1, (newEFBHeight - 1) / EFB_HEIGHT + 1); m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1; newEFBWidth = EFBToScaledX(EFB_WIDTH); newEFBHeight = EFBToScaledY(EFB_HEIGHT); } else { m_efb_scale_numeratorX = newEFBWidth; m_efb_scale_denominatorX = EFB_WIDTH; m_efb_scale_numeratorY = newEFBHeight; m_efb_scale_denominatorY = EFB_HEIGHT; } break; case SCALE_1X: m_efb_scale_numeratorX = m_efb_scale_numeratorY = 1; m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1; break; case SCALE_1_5X: m_efb_scale_numeratorX = m_efb_scale_numeratorY = 3; m_efb_scale_denominatorX = m_efb_scale_denominatorY = 2; break; case SCALE_2X: m_efb_scale_numeratorX = m_efb_scale_numeratorY = 2; m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1; break; case SCALE_2_5X: m_efb_scale_numeratorX = m_efb_scale_numeratorY = 5; m_efb_scale_denominatorX = m_efb_scale_denominatorY = 2; break; default: m_efb_scale_numeratorX = m_efb_scale_numeratorY = m_last_efb_scale - 3; m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1; const u32 max_size = g_ActiveConfig.backend_info.MaxTextureSize; if (max_size < EFB_WIDTH * m_efb_scale_numeratorX / m_efb_scale_denominatorX) { m_efb_scale_numeratorX = m_efb_scale_numeratorY = (max_size / EFB_WIDTH); m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1; } break; } if (m_last_efb_scale > SCALE_AUTO_INTEGRAL) CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT, &newEFBWidth, &newEFBHeight); if (newEFBWidth != m_target_width || newEFBHeight != m_target_height) { m_target_width = newEFBWidth; m_target_height = newEFBHeight; PixelShaderManager::SetEfbScaleChanged(EFBToScaledXf(1), EFBToScaledYf(1)); return true; } return false; } void Renderer::ConvertStereoRectangle(const TargetRectangle& rc, TargetRectangle& leftRc, TargetRectangle& rightRc) { // Resize target to half its original size TargetRectangle drawRc = rc; if (g_ActiveConfig.iStereoMode == STEREO_TAB) { // The height may be negative due to flipped rectangles int height = rc.bottom - rc.top; drawRc.top += height / 4; drawRc.bottom -= height / 4; } else { int width = rc.right - rc.left; drawRc.left += width / 4; drawRc.right -= width / 4; } // Create two target rectangle offset to the sides of the backbuffer leftRc = drawRc, rightRc = drawRc; if (g_ActiveConfig.iStereoMode == STEREO_TAB) { leftRc.top -= m_backbuffer_height / 4; leftRc.bottom -= m_backbuffer_height / 4; rightRc.top += m_backbuffer_height / 4; rightRc.bottom += m_backbuffer_height / 4; } else { leftRc.left -= m_backbuffer_width / 4; leftRc.right -= m_backbuffer_width / 4; rightRc.left += m_backbuffer_width / 4; rightRc.right += m_backbuffer_width / 4; } } void Renderer::SaveScreenshot(const std::string& filename, bool wait_for_completion) { // We must not hold the lock while waiting for the screenshot to complete. { std::lock_guard lk(m_screenshot_lock); m_screenshot_name = filename; m_screenshot_request.Set(); } if (wait_for_completion) { // This is currently only used by Android, and it was using a wait time of 2 seconds. m_screenshot_completed.WaitFor(std::chrono::seconds(2)); } } // Create On-Screen-Messages void Renderer::DrawDebugText() { std::string final_yellow, final_cyan; if (g_ActiveConfig.bShowFPS || SConfig::GetInstance().m_ShowFrameCount) { if (g_ActiveConfig.bShowFPS) final_cyan += StringFromFormat("FPS: %u", g_renderer->m_fps_counter.GetFPS()); if (g_ActiveConfig.bShowFPS && SConfig::GetInstance().m_ShowFrameCount) final_cyan += " - "; if (SConfig::GetInstance().m_ShowFrameCount) { final_cyan += StringFromFormat("Frame: %" PRIu64, Movie::GetCurrentFrame()); if (Movie::IsPlayingInput()) final_cyan += StringFromFormat("\nInput: %" PRIu64 " / %" PRIu64, Movie::GetCurrentInputCount(), Movie::GetTotalInputCount()); } final_cyan += "\n"; final_yellow += "\n"; } if (SConfig::GetInstance().m_ShowLag) { final_cyan += StringFromFormat("Lag: %" PRIu64 "\n", Movie::GetCurrentLagCount()); final_yellow += "\n"; } if (SConfig::GetInstance().m_ShowInputDisplay) { final_cyan += Movie::GetInputDisplay(); final_yellow += "\n"; } if (SConfig::GetInstance().m_ShowRTC) { final_cyan += Movie::GetRTCDisplay(); final_yellow += "\n"; } // OSD Menu messages if (OSDChoice > 0) { OSDTime = Common::Timer::GetTimeMs() + 3000; OSDChoice = -OSDChoice; } if ((u32)OSDTime > Common::Timer::GetTimeMs()) { std::string res_text; switch (g_ActiveConfig.iEFBScale) { case SCALE_AUTO: res_text = "Auto (fractional)"; break; case SCALE_AUTO_INTEGRAL: res_text = "Auto (integral)"; break; case SCALE_1X: res_text = "Native"; break; case SCALE_1_5X: res_text = "1.5x"; break; case SCALE_2X: res_text = "2x"; break; case SCALE_2_5X: res_text = "2.5x"; break; default: res_text = StringFromFormat("%dx", g_ActiveConfig.iEFBScale - 3); break; } const char* ar_text = ""; switch (g_ActiveConfig.iAspectRatio) { case ASPECT_AUTO: ar_text = "Auto"; break; case ASPECT_STRETCH: ar_text = "Stretch"; break; case ASPECT_ANALOG: ar_text = "Force 4:3"; break; case ASPECT_ANALOG_WIDE: ar_text = "Force 16:9"; } const char* const efbcopy_text = g_ActiveConfig.bSkipEFBCopyToRam ? "to Texture" : "to RAM"; // The rows const std::string lines[] = { std::string("Internal Resolution: ") + res_text, std::string("Aspect Ratio: ") + ar_text + (g_ActiveConfig.bCrop ? " (crop)" : ""), std::string("Copy EFB: ") + efbcopy_text, std::string("Fog: ") + (g_ActiveConfig.bDisableFog ? "Disabled" : "Enabled"), SConfig::GetInstance().m_EmulationSpeed <= 0 ? "Speed Limit: Unlimited" : StringFromFormat("Speed Limit: %li%%", std::lround(SConfig::GetInstance().m_EmulationSpeed * 100.f)), }; enum { lines_count = sizeof(lines) / sizeof(*lines) }; // The latest changed setting in yellow for (int i = 0; i != lines_count; ++i) { if (OSDChoice == -i - 1) final_yellow += lines[i]; final_yellow += '\n'; } // The other settings in cyan for (int i = 0; i != lines_count; ++i) { if (OSDChoice != -i - 1) final_cyan += lines[i]; final_cyan += '\n'; } } final_cyan += Common::Profiler::ToString(); if (g_ActiveConfig.bOverlayStats) final_cyan += Statistics::ToString(); if (g_ActiveConfig.bOverlayProjStats) final_cyan += Statistics::ToStringProj(); // and then the text g_renderer->RenderText(final_cyan, 20, 20, 0xFF00FFFF); g_renderer->RenderText(final_yellow, 20, 20, 0xFFFFFF00); } float Renderer::CalculateDrawAspectRatio(int target_width, int target_height) { // The dimensions are the sizes that are used to create the EFB/backbuffer textures, so // they should always be greater than zero. _assert_(target_width > 0 && target_height > 0); if (g_ActiveConfig.iAspectRatio == ASPECT_STRETCH) { // If stretch is enabled, we prefer the aspect ratio of the window. return (static_cast(target_width) / static_cast(target_height)) / (static_cast(m_backbuffer_width) / static_cast(m_backbuffer_height)); } // The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio if (g_ActiveConfig.iAspectRatio == ASPECT_ANALOG_WIDE || (g_ActiveConfig.iAspectRatio != ASPECT_ANALOG && Core::g_aspect_wide)) { return (static_cast(target_width) / static_cast(target_height)) / AspectToWidescreen(VideoInterface::GetAspectRatio()); } else { return (static_cast(target_width) / static_cast(target_height)) / VideoInterface::GetAspectRatio(); } } std::tuple Renderer::ScaleToDisplayAspectRatio(const int width, const int height) { // Scale either the width or height depending the content aspect ratio. // This way we preserve as much resolution as possible when scaling. float ratio = CalculateDrawAspectRatio(width, height); if (ratio >= 1.0f) { // Preserve horizontal resolution, scale vertically. return std::make_tuple(static_cast(width), static_cast(height) * ratio); } // Preserve vertical resolution, scale horizontally. return std::make_tuple(static_cast(width) / ratio, static_cast(height)); } TargetRectangle Renderer::CalculateFrameDumpDrawRectangle() { // No point including any borders in the frame dump image, since they'd have to be cropped anyway. TargetRectangle rc; rc.left = 0; rc.top = 0; // If full-resolution frame dumping is disabled, just use the window draw rectangle. // Also do this if RealXFB is enabled, since the image has been downscaled for the XFB copy // anyway, and there's no point writing an upscaled frame with no filtering. if (!g_ActiveConfig.bInternalResolutionFrameDumps || g_ActiveConfig.RealXFBEnabled()) { // But still remove the borders, since the caller expects this. rc.right = m_target_rectangle.GetWidth(); rc.bottom = m_target_rectangle.GetHeight(); return rc; } // Grab the dimensions of the EFB textures, we scale either of these depending on the ratio. u32 efb_width, efb_height; std::tie(efb_width, efb_height) = g_framebuffer_manager->GetTargetSize(); float draw_width, draw_height; std::tie(draw_width, draw_height) = ScaleToDisplayAspectRatio(efb_width, efb_height); rc.right = static_cast(std::ceil(draw_width)); rc.bottom = static_cast(std::ceil(draw_height)); return rc; } void Renderer::UpdateDrawRectangle() { float FloatGLWidth = static_cast(m_backbuffer_width); float FloatGLHeight = static_cast(m_backbuffer_height); float FloatXOffset = 0; float FloatYOffset = 0; // The rendering window size const float WinWidth = FloatGLWidth; const float WinHeight = FloatGLHeight; // Update aspect ratio hack values // Won't take effect until next frame // Don't know if there is a better place for this code so there isn't a 1 frame delay if (g_ActiveConfig.bWidescreenHack) { float source_aspect = VideoInterface::GetAspectRatio(); if (Core::g_aspect_wide) source_aspect = AspectToWidescreen(source_aspect); float target_aspect; switch (g_ActiveConfig.iAspectRatio) { case ASPECT_STRETCH: target_aspect = WinWidth / WinHeight; break; case ASPECT_ANALOG: target_aspect = VideoInterface::GetAspectRatio(); break; case ASPECT_ANALOG_WIDE: target_aspect = AspectToWidescreen(VideoInterface::GetAspectRatio()); break; default: // ASPECT_AUTO target_aspect = source_aspect; break; } float adjust = source_aspect / target_aspect; if (adjust > 1) { // Vert+ g_Config.fAspectRatioHackW = 1; g_Config.fAspectRatioHackH = 1 / adjust; } else { // Hor+ g_Config.fAspectRatioHackW = adjust; g_Config.fAspectRatioHackH = 1; } } else { // Hack is disabled g_Config.fAspectRatioHackW = 1; g_Config.fAspectRatioHackH = 1; } // Check for force-settings and override. // The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio float Ratio = CalculateDrawAspectRatio(m_backbuffer_width, m_backbuffer_height); if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH) { if (Ratio >= 0.995f && Ratio <= 1.005f) { // If we're very close already, don't scale. Ratio = 1.0f; } else if (Ratio > 1.0f) { // Scale down and center in the X direction. FloatGLWidth /= Ratio; FloatXOffset = (WinWidth - FloatGLWidth) / 2.0f; } // The window is too high, we have to limit the height else { // Scale down and center in the Y direction. FloatGLHeight *= Ratio; FloatYOffset = FloatYOffset + (WinHeight - FloatGLHeight) / 2.0f; } } // ----------------------------------------------------------------------- // Crop the picture from Analog to 4:3 or from Analog (Wide) to 16:9. // Output: FloatGLWidth, FloatGLHeight, FloatXOffset, FloatYOffset // ------------------ if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH && g_ActiveConfig.bCrop) { Ratio = (4.0f / 3.0f) / VideoInterface::GetAspectRatio(); if (Ratio <= 1.0f) { Ratio = 1.0f / Ratio; } // The width and height we will add (calculate this before FloatGLWidth and FloatGLHeight is // adjusted) float IncreasedWidth = (Ratio - 1.0f) * FloatGLWidth; float IncreasedHeight = (Ratio - 1.0f) * FloatGLHeight; // The new width and height FloatGLWidth = FloatGLWidth * Ratio; FloatGLHeight = FloatGLHeight * Ratio; // Adjust the X and Y offset FloatXOffset = FloatXOffset - (IncreasedWidth * 0.5f); FloatYOffset = FloatYOffset - (IncreasedHeight * 0.5f); } int XOffset = (int)(FloatXOffset + 0.5f); int YOffset = (int)(FloatYOffset + 0.5f); int iWhidth = (int)ceil(FloatGLWidth); int iHeight = (int)ceil(FloatGLHeight); iWhidth -= iWhidth % 4; // ensure divisibility by 4 to make it compatible with all the video encoders iHeight -= iHeight % 4; m_target_rectangle.left = XOffset; m_target_rectangle.top = YOffset; m_target_rectangle.right = XOffset + iWhidth; m_target_rectangle.bottom = YOffset + iHeight; } void Renderer::SetWindowSize(int width, int height) { width = std::max(width, 1); height = std::max(height, 1); // Scale the window size by the EFB scale. CalculateTargetScale(width, height, &width, &height); float scaled_width, scaled_height; std::tie(scaled_width, scaled_height) = ScaleToDisplayAspectRatio(width, height); if (g_ActiveConfig.bCrop) { // Force 4:3 or 16:9 by cropping the image. float current_aspect = scaled_width / scaled_height; float expected_aspect = (g_ActiveConfig.iAspectRatio == ASPECT_ANALOG_WIDE || (g_ActiveConfig.iAspectRatio != ASPECT_ANALOG && Core::g_aspect_wide)) ? (16.0f / 9.0f) : (4.0f / 3.0f); if (current_aspect > expected_aspect) { // keep height, crop width scaled_width = scaled_height * expected_aspect; } else { // keep width, crop height scaled_height = scaled_width / expected_aspect; } } width = static_cast(std::ceil(scaled_width)); height = static_cast(std::ceil(scaled_height)); // UpdateDrawRectangle() makes sure that the rendered image is divisible by four for video // encoders, so do that here too to match it width -= width % 4; height -= height % 4; // Track the last values of width/height to avoid sending a window resize event every frame. if (width != m_last_window_request_width || height != m_last_window_request_height) { m_last_window_request_width = width; m_last_window_request_height = height; Host_RequestRenderWindowSize(width, height); } } void Renderer::CheckFifoRecording() { bool wasRecording = g_bRecordFifoData; g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording(); if (g_bRecordFifoData) { if (!wasRecording) { RecordVideoMemory(); } FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase, CommandProcessor::fifo.CPEnd); } } void Renderer::RecordVideoMemory() { const u32* bpmem_ptr = reinterpret_cast(&bpmem); u32 cpmem[256] = {}; // The FIFO recording format splits XF memory into xfmem and xfregs; follow // that split here. const u32* xfmem_ptr = reinterpret_cast(&xfmem); const u32* xfregs_ptr = reinterpret_cast(&xfmem) + FifoDataFile::XF_MEM_SIZE; u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE; FillCPMemoryArray(cpmem); FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size, texMem); } void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc, u64 ticks, float Gamma) { // TODO: merge more generic parts into VideoCommon g_renderer->SwapImpl(xfbAddr, fbWidth, fbStride, fbHeight, rc, ticks, Gamma); if (m_xfb_written) g_renderer->m_fps_counter.Update(); frameCount++; GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true); // Begin new frame // Set default viewport and scissor, for the clear to work correctly // New frame stats.ResetFrame(); Core::Callback_VideoCopiedToXFB(m_xfb_written || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB)); m_xfb_written = false; } bool Renderer::IsFrameDumping() { if (m_screenshot_request.IsSet()) return true; #if defined(HAVE_LIBAV) || defined(_WIN32) if (SConfig::GetInstance().m_DumpFrames) return true; #endif ShutdownFrameDumping(); return false; } void Renderer::ShutdownFrameDumping() { if (!m_frame_dump_thread_running.IsSet()) return; FinishFrameData(); m_frame_dump_thread_running.Clear(); m_frame_dump_start.Set(); } void Renderer::DumpFrameData(const u8* data, int w, int h, int stride, const AVIDump::Frame& state, bool swap_upside_down) { FinishFrameData(); m_frame_dump_config = FrameDumpConfig{data, w, h, stride, swap_upside_down, state}; if (!m_frame_dump_thread_running.IsSet()) { if (m_frame_dump_thread.joinable()) m_frame_dump_thread.join(); m_frame_dump_thread_running.Set(); m_frame_dump_thread = std::thread(&Renderer::RunFrameDumps, this); } m_frame_dump_start.Set(); m_frame_dump_frame_running = true; } void Renderer::FinishFrameData() { if (!m_frame_dump_frame_running) return; m_frame_dump_done.Wait(); m_frame_dump_frame_running = false; } void Renderer::RunFrameDumps() { Common::SetCurrentThreadName("FrameDumping"); bool dump_to_avi = !g_ActiveConfig.bDumpFramesAsImages; bool frame_dump_started = false; // If Dolphin was compiled without libav, we only support dumping to images. #if !defined(HAVE_LIBAV) && !defined(_WIN32) if (dump_to_avi) { WARN_LOG(VIDEO, "AVI frame dump requested, but Dolphin was compiled without libav. " "Frame dump will be saved as images instead."); dump_to_avi = false; } #endif while (true) { m_frame_dump_start.Wait(); if (!m_frame_dump_thread_running.IsSet()) break; auto config = m_frame_dump_config; if (config.upside_down) { config.data = config.data + (config.height - 1) * config.stride; config.stride = -config.stride; } // Save screenshot if (m_screenshot_request.TestAndClear()) { std::lock_guard lk(m_screenshot_lock); if (TextureToPng(config.data, config.stride, m_screenshot_name, config.width, config.height, false)) OSD::AddMessage("Screenshot saved to " + m_screenshot_name); // Reset settings m_screenshot_name.clear(); m_screenshot_completed.Set(); } if (SConfig::GetInstance().m_DumpFrames) { if (!frame_dump_started) { if (dump_to_avi) frame_dump_started = StartFrameDumpToAVI(config); else frame_dump_started = StartFrameDumpToImage(config); // Stop frame dumping if we fail to start. if (!frame_dump_started) SConfig::GetInstance().m_DumpFrames = false; } // If we failed to start frame dumping, don't write a frame. if (frame_dump_started) { if (dump_to_avi) DumpFrameToAVI(config); else DumpFrameToImage(config); } } m_frame_dump_done.Set(); } if (frame_dump_started) { // No additional cleanup is needed when dumping to images. if (dump_to_avi) StopFrameDumpToAVI(); } } #if defined(HAVE_LIBAV) || defined(_WIN32) bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config) { return AVIDump::Start(config.width, config.height); } void Renderer::DumpFrameToAVI(const FrameDumpConfig& config) { AVIDump::AddFrame(config.data, config.width, config.height, config.stride, config.state); } void Renderer::StopFrameDumpToAVI() { AVIDump::Stop(); } #else bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config) { return false; } void Renderer::DumpFrameToAVI(const FrameDumpConfig& config) { } void Renderer::StopFrameDumpToAVI() { } #endif // defined(HAVE_LIBAV) || defined(WIN32) std::string Renderer::GetFrameDumpNextImageFileName() const { return StringFromFormat("%sframedump_%u.png", File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), m_frame_dump_image_counter); } bool Renderer::StartFrameDumpToImage(const FrameDumpConfig& config) { m_frame_dump_image_counter = 1; if (!SConfig::GetInstance().m_DumpFramesSilent) { // Only check for the presence of the first image to confirm overwriting. // A previous run will always have at least one image, and it's safe to assume that if the user // has allowed the first image to be overwritten, this will apply any remaining images as well. std::string filename = GetFrameDumpNextImageFileName(); if (File::Exists(filename)) { if (!AskYesNoT("Frame dump image(s) '%s' already exists. Overwrite?", filename.c_str())) return false; } } return true; } void Renderer::DumpFrameToImage(const FrameDumpConfig& config) { std::string filename = GetFrameDumpNextImageFileName(); TextureToPng(config.data, config.stride, filename, config.width, config.height, false); m_frame_dump_image_counter++; } bool Renderer::UseVertexDepthRange() const { // We can't compute the depth range in the vertex shader if we don't support depth clamp. if (!g_ActiveConfig.backend_info.bSupportsDepthClamp) return false; // We need a full depth range if a ztexture is used. if (bpmem.ztex2.type != ZTEXTURE_DISABLE && !bpmem.zcontrol.early_ztest) return true; // If an inverted depth range is unsupported, we also need to check if the range is inverted. if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange && xfmem.viewport.zRange < 0.0f) return true; // If an oversized depth range or a ztexture is used, we need to calculate the depth range // in the vertex shader. return fabs(xfmem.viewport.zRange) > 16777215.0f || fabs(xfmem.viewport.farZ) > 16777215.0f; }