// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. // Fast image conversion using OpenGL shaders. #include #include "Common/Common.h" #include "Common/FileUtil.h" #include "Common/StringUtil.h" #include "Core/HW/Memmap.h" #include "VideoBackends/OGL/FramebufferManager.h" #include "VideoBackends/OGL/ProgramShaderCache.h" #include "VideoBackends/OGL/Render.h" #include "VideoBackends/OGL/SamplerCache.h" #include "VideoBackends/OGL/TextureCache.h" #include "VideoBackends/OGL/TextureConverter.h" #include "VideoCommon/DriverDetails.h" #include "VideoCommon/ImageWrite.h" #include "VideoCommon/TextureConversionShader.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" namespace OGL { namespace TextureConverter { using OGL::TextureCache; static GLuint s_texConvFrameBuffer[2] = {0, 0}; static GLuint s_srcTexture = 0; // for decoding from RAM static GLuint s_dstTexture = 0; // for encoding to RAM const int renderBufferWidth = EFB_WIDTH * 4; const int renderBufferHeight = 1024; static SHADER s_rgbToYuyvProgram; static int s_rgbToYuyvUniform_loc; static SHADER s_yuyvToRgbProgram; // Not all slots are taken - but who cares. const u32 NUM_ENCODING_PROGRAMS = 64; static SHADER s_encodingPrograms[NUM_ENCODING_PROGRAMS]; static int s_encodingUniforms[NUM_ENCODING_PROGRAMS]; static GLuint s_PBO = 0; // for readback with different strides static void CreatePrograms() { /* TODO: Accuracy Improvements * * This shader doesn't really match what the GameCube does internally in the * copy pipeline. * 1. It uses OpenGL's built in filtering when yscaling, someone could work * out how the copypipeline does it's filtering and implement it correctly * in this shader. * 2. Deflickering isn't implemented, a futher filtering over 3 lines. * Isn't really needed on non-interlaced monitors (and would lower quality; * But hey, accuracy!) * 3. Flipper's YUYV conversion implements a 3 pixel horizontal blur on the * UV channels, centering the U channel on the Left pixel and the V channel * on the Right pixel. * The current implementation Centers both UV channels at the same place * inbetween the two Pixels, and only blurs over these two pixels. */ // Output is BGRA because that is slightly faster than RGBA. const char* VProgramRgbToYuyv = "out vec2 uv0;\n" "uniform vec4 copy_position;\n" // left, top, right, bottom "SAMPLER_BINDING(9) uniform sampler2DArray samp9;\n" "void main()\n" "{\n" " vec2 rawpos = vec2(gl_VertexID&1, gl_VertexID&2);\n" " gl_Position = vec4(rawpos*2.0-1.0, 0.0, 1.0);\n" " uv0 = mix(copy_position.xy, copy_position.zw, rawpos) / vec2(textureSize(samp9, 0).xy);\n" "}\n"; const char* FProgramRgbToYuyv = "SAMPLER_BINDING(9) uniform sampler2DArray samp9;\n" "in vec2 uv0;\n" "out vec4 ocol0;\n" "void main()\n" "{\n" " vec3 c0 = texture(samp9, vec3(uv0 - dFdx(uv0) * 0.25, 0.0)).rgb;\n" " vec3 c1 = texture(samp9, vec3(uv0 + dFdx(uv0) * 0.25, 0.0)).rgb;\n" " vec3 c01 = (c0 + c1) * 0.5;\n" " vec3 y_const = vec3(0.257,0.504,0.098);\n" " vec3 u_const = vec3(-0.148,-0.291,0.439);\n" " vec3 v_const = vec3(0.439,-0.368,-0.071);\n" " vec4 const3 = vec4(0.0625,0.5,0.0625,0.5);\n" " ocol0 = vec4(dot(c1,y_const),dot(c01,u_const),dot(c0,y_const),dot(c01, v_const)) + " "const3;\n" "}\n"; ProgramShaderCache::CompileShader(s_rgbToYuyvProgram, VProgramRgbToYuyv, FProgramRgbToYuyv); s_rgbToYuyvUniform_loc = glGetUniformLocation(s_rgbToYuyvProgram.glprogid, "copy_position"); /* TODO: Accuracy Improvements * * The YVYU to RGB conversion here matches the RGB to YUYV done above, but * if a game modifies or adds images to the XFB then it should be using the * same algorithm as the flipper, and could result in slight color inaccuracies * when run back through this shader. */ const char* VProgramYuyvToRgb = "void main()\n" "{\n" " vec2 rawpos = vec2(gl_VertexID&1, gl_VertexID&2);\n" " gl_Position = vec4(rawpos*2.0-1.0, 0.0, 1.0);\n" "}\n"; const char* FProgramYuyvToRgb = "SAMPLER_BINDING(9) uniform sampler2D samp9;\n" "in vec2 uv0;\n" "out vec4 ocol0;\n" "void main()\n" "{\n" " ivec2 uv = ivec2(gl_FragCoord.xy);\n" // We switch top/bottom here. TODO: move this to screen blit. " ivec2 ts = textureSize(samp9, 0);\n" " vec4 c0 = texelFetch(samp9, ivec2(uv.x>>1, ts.y-uv.y-1), 0);\n" " float y = mix(c0.r, c0.b, (uv.x & 1) == 1);\n" " float yComp = 1.164 * (y - 0.0625);\n" " float uComp = c0.g - 0.5;\n" " float vComp = c0.a - 0.5;\n" " ocol0 = vec4(yComp + (1.596 * vComp),\n" " yComp - (0.813 * vComp) - (0.391 * uComp),\n" " yComp + (2.018 * uComp),\n" " 1.0);\n" "}\n"; ProgramShaderCache::CompileShader(s_yuyvToRgbProgram, VProgramYuyvToRgb, FProgramYuyvToRgb); } static SHADER& GetOrCreateEncodingShader(u32 format) { if (format >= NUM_ENCODING_PROGRAMS) { PanicAlert("Unknown texture copy format: 0x%x\n", format); return s_encodingPrograms[0]; } if (s_encodingPrograms[format].glprogid == 0) { const char* shader = TextureConversionShader::GenerateEncodingShader(format, APIType::OpenGL); #if defined(_DEBUG) || defined(DEBUGFAST) if (g_ActiveConfig.iLog & CONF_SAVESHADERS && shader) { static int counter = 0; std::string filename = StringFromFormat("%senc_%04i.txt", File::GetUserPath(D_DUMP_IDX).c_str(), counter++); SaveData(filename, shader); } #endif const char* VProgram = "void main()\n" "{\n" " vec2 rawpos = vec2(gl_VertexID&1, gl_VertexID&2);\n" " gl_Position = vec4(rawpos*2.0-1.0, 0.0, 1.0);\n" "}\n"; ProgramShaderCache::CompileShader(s_encodingPrograms[format], VProgram, shader); s_encodingUniforms[format] = glGetUniformLocation(s_encodingPrograms[format].glprogid, "position"); } return s_encodingPrograms[format]; } void Init() { glGenFramebuffers(2, s_texConvFrameBuffer); glActiveTexture(GL_TEXTURE9); glGenTextures(1, &s_srcTexture); glBindTexture(GL_TEXTURE_2D, s_srcTexture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); glGenTextures(1, &s_dstTexture); glBindTexture(GL_TEXTURE_2D, s_dstTexture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, renderBufferWidth, renderBufferHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); FramebufferManager::SetFramebuffer(s_texConvFrameBuffer[0]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, s_dstTexture, 0); FramebufferManager::SetFramebuffer(0); glGenBuffers(1, &s_PBO); CreatePrograms(); } void Shutdown() { glDeleteTextures(1, &s_srcTexture); glDeleteTextures(1, &s_dstTexture); glDeleteBuffers(1, &s_PBO); glDeleteFramebuffers(2, s_texConvFrameBuffer); s_rgbToYuyvProgram.Destroy(); s_yuyvToRgbProgram.Destroy(); for (auto& program : s_encodingPrograms) program.Destroy(); s_srcTexture = 0; s_dstTexture = 0; s_PBO = 0; s_texConvFrameBuffer[0] = 0; s_texConvFrameBuffer[1] = 0; } // dst_line_size, writeStride in bytes static void EncodeToRamUsingShader(GLuint srcTexture, u8* destAddr, u32 dst_line_size, u32 dstHeight, u32 writeStride, bool linearFilter) { // switch to texture converter frame buffer // attach render buffer as color destination FramebufferManager::SetFramebuffer(s_texConvFrameBuffer[0]); OpenGL_BindAttributelessVAO(); // set source texture glActiveTexture(GL_TEXTURE9); glBindTexture(GL_TEXTURE_2D_ARRAY, srcTexture); // We also linear filtering for both box filtering and downsampling higher resolutions to 1x // TODO: This only produces perfect downsampling for 1.5x and 2x IR, other resolution will // need more complex down filtering to average all pixels and produce the correct result. // Also, box filtering won't be correct for anything other than 1x IR if (linearFilter || g_ActiveConfig.iEFBScale != SCALE_1X) g_sampler_cache->BindLinearSampler(9); else g_sampler_cache->BindNearestSampler(9); glViewport(0, 0, (GLsizei)(dst_line_size / 4), (GLsizei)dstHeight); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); int dstSize = dst_line_size * dstHeight; if ((writeStride != dst_line_size) && (dstHeight > 1)) { // writing to a texture of a different size // also copy more then one block line, so the different strides matters // copy into one pbo first, map this buffer, and then memcpy into GC memory // in this way, we only have one vram->ram transfer, but maybe a bigger // CPU overhead because of the pbo glBindBuffer(GL_PIXEL_PACK_BUFFER, s_PBO); glBufferData(GL_PIXEL_PACK_BUFFER, dstSize, nullptr, GL_STREAM_READ); glReadPixels(0, 0, (GLsizei)(dst_line_size / 4), (GLsizei)dstHeight, GL_BGRA, GL_UNSIGNED_BYTE, nullptr); u8* pbo = (u8*)glMapBufferRange(GL_PIXEL_PACK_BUFFER, 0, dstSize, GL_MAP_READ_BIT); for (size_t i = 0; i < dstHeight; ++i) { memcpy(destAddr, pbo, dst_line_size); pbo += dst_line_size; destAddr += writeStride; } glUnmapBuffer(GL_PIXEL_PACK_BUFFER); glBindBuffer(GL_PIXEL_PACK_BUFFER, 0); } else { glReadPixels(0, 0, (GLsizei)(dst_line_size / 4), (GLsizei)dstHeight, GL_BGRA, GL_UNSIGNED_BYTE, destAddr); } } void EncodeToRamFromTexture(u8* dest_ptr, u32 format, u32 native_width, u32 bytes_per_row, u32 num_blocks_y, u32 memory_stride, PEControl::PixelFormat srcFormat, bool bIsIntensityFmt, int bScaleByHalf, const EFBRectangle& source) { g_renderer->ResetAPIState(); SHADER& texconv_shader = GetOrCreateEncodingShader(format); texconv_shader.Bind(); glUniform4i(s_encodingUniforms[format], source.left, source.top, native_width, bScaleByHalf ? 2 : 1); const GLuint read_texture = (srcFormat == PEControl::Z24) ? FramebufferManager::ResolveAndGetDepthTarget(source) : FramebufferManager::ResolveAndGetRenderTarget(source); EncodeToRamUsingShader(read_texture, dest_ptr, bytes_per_row, num_blocks_y, memory_stride, bScaleByHalf > 0 && srcFormat != PEControl::Z24); FramebufferManager::SetFramebuffer(0); g_renderer->RestoreAPIState(); } void EncodeToRamYUYV(GLuint srcTexture, const TargetRectangle& sourceRc, u8* destAddr, u32 dstWidth, u32 dstStride, u32 dstHeight) { g_renderer->ResetAPIState(); s_rgbToYuyvProgram.Bind(); glUniform4f(s_rgbToYuyvUniform_loc, static_cast(sourceRc.left), static_cast(sourceRc.top), static_cast(sourceRc.right), static_cast(sourceRc.bottom)); // We enable linear filtering, because the GameCube does filtering in the vertical direction when // yscale is enabled. // Otherwise we get jaggies when a game uses yscaling (most PAL games) EncodeToRamUsingShader(srcTexture, destAddr, dstWidth * 2, dstHeight, dstStride, true); FramebufferManager::SetFramebuffer(0); TextureCache::DisableStage(0); g_renderer->RestoreAPIState(); } // Should be scale free. void DecodeToTexture(u32 xfbAddr, int srcWidth, int srcHeight, GLuint destTexture) { u8* srcAddr = Memory::GetPointer(xfbAddr); if (!srcAddr) { WARN_LOG(VIDEO, "Tried to decode from invalid memory address"); return; } g_renderer->ResetAPIState(); // reset any game specific settings OpenGL_BindAttributelessVAO(); // switch to texture converter frame buffer // attach destTexture as color destination FramebufferManager::SetFramebuffer(s_texConvFrameBuffer[1]); FramebufferManager::FramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D_ARRAY, destTexture, 0); // activate source texture // set srcAddr as data for source texture glActiveTexture(GL_TEXTURE9); glBindTexture(GL_TEXTURE_2D, s_srcTexture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, srcWidth / 2, srcHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, srcAddr); g_sampler_cache->BindNearestSampler(9); glViewport(0, 0, srcWidth, srcHeight); s_yuyvToRgbProgram.Bind(); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); FramebufferManager::SetFramebuffer(0); g_renderer->RestoreAPIState(); } } // namespace } // namespace OGL