dolphin/Source/Core/VideoCommon/Src/PixelShaderGen.cpp
Lioncash 8da425b008 Formatting cleanup for VideoCommon.
Block braces on new lines.

Also killed off trailing whitespace and dangling elses.

Spaced some things out to make them more readable (only in places where it looked like a bit of a clusterfuck).
2013-04-24 09:21:54 -04:00

1363 lines
46 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <stdio.h>
#include <cmath>
#include <assert.h>
#include <locale.h>
#include "LightingShaderGen.h"
#include "PixelShaderGen.h"
#include "XFMemory.h" // for texture projection mode
#include "BPMemory.h"
#include "VideoConfig.h"
#include "NativeVertexFormat.h"
static void StageHash(u32 stage, u32* out)
{
out[0] |= bpmem.combiners[stage].colorC.hex & 0xFFFFFF; // 24
u32 alphaC = bpmem.combiners[stage].alphaC.hex & 0xFFFFF0; // 24, strip out tswap and rswap for now
out[0] |= (alphaC&0xF0) << 24; // 8
out[1] |= alphaC >> 8; // 16
// reserve 3 bits for bpmem.tevorders[stage/2].getTexMap
out[1] |= bpmem.tevorders[stage/2].getTexCoord(stage&1) << 19; // 3
out[1] |= bpmem.tevorders[stage/2].getEnable(stage&1) << 22; // 1
// reserve 3 bits for bpmem.tevorders[stage/2].getColorChan
bool bHasIndStage = bpmem.tevind[stage].IsActive() && bpmem.tevind[stage].bt < bpmem.genMode.numindstages;
out[2] |= bHasIndStage << 2; // 1
bool needstexcoord = false;
if (bHasIndStage)
{
out[2] |= (bpmem.tevind[stage].hex & 0x17FFFF) << 3; // 21, TODO: needs an explanation
needstexcoord = true;
}
TevStageCombiner::ColorCombiner& cc = bpmem.combiners[stage].colorC;
TevStageCombiner::AlphaCombiner& ac = bpmem.combiners[stage].alphaC;
if(cc.a == TEVCOLORARG_RASA || cc.a == TEVCOLORARG_RASC
|| cc.b == TEVCOLORARG_RASA || cc.b == TEVCOLORARG_RASC
|| cc.c == TEVCOLORARG_RASA || cc.c == TEVCOLORARG_RASC
|| cc.d == TEVCOLORARG_RASA || cc.d == TEVCOLORARG_RASC
|| ac.a == TEVALPHAARG_RASA || ac.b == TEVALPHAARG_RASA
|| ac.c == TEVALPHAARG_RASA || ac.d == TEVALPHAARG_RASA)
{
out[0] |= bpmem.combiners[stage].alphaC.rswap;
out[2] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.rswap*2].swap1 << 24; // 2
out[2] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.rswap*2].swap2 << 26; // 2
out[2] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.rswap*2+1].swap1 << 28; // 2
out[2] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.rswap*2+1].swap2 << 30; // 2
out[1] |= (bpmem.tevorders[stage/2].getColorChan(stage&1)&1) << 23;
out[2] |= (bpmem.tevorders[stage/2].getColorChan(stage&1)&0x6) >> 1;
}
out[3] |= bpmem.tevorders[stage/2].getEnable(stage&1);
if (bpmem.tevorders[stage/2].getEnable(stage&1))
{
if (bHasIndStage)
needstexcoord = true;
out[0] |= bpmem.combiners[stage].alphaC.tswap;
out[3] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.tswap*2].swap1 << 1; // 2
out[3] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.tswap*2].swap2 << 3; // 2
out[3] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.tswap*2+1].swap1 << 5; // 2
out[3] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.tswap*2+1].swap2 << 7; // 2
out[1] |= bpmem.tevorders[stage/2].getTexMap(stage&1) << 16;
}
if (cc.a == TEVCOLORARG_KONST || cc.b == TEVCOLORARG_KONST || cc.c == TEVCOLORARG_KONST || cc.d == TEVCOLORARG_KONST
|| ac.a == TEVALPHAARG_KONST || ac.b == TEVALPHAARG_KONST || ac.c == TEVALPHAARG_KONST || ac.d == TEVALPHAARG_KONST)
{
out[3] |= bpmem.tevksel[stage/2].getKC(stage&1) << 9; // 5
out[3] |= bpmem.tevksel[stage/2].getKA(stage&1) << 14; // 5
}
if (needstexcoord)
{
out[1] |= bpmem.tevorders[stage/2].getTexCoord(stage&1) << 16;
}
}
// Mash together all the inputs that contribute to the code of a generated pixel shader into
// a unique identifier, basically containing all the bits. Yup, it's a lot ....
// It would likely be a lot more efficient to build this incrementally as the attributes
// are set...
void GetPixelShaderId(PIXELSHADERUID *uid, DSTALPHA_MODE dstAlphaMode, u32 components)
{
memset(uid->values, 0, sizeof(uid->values));
uid->values[0] |= bpmem.genMode.numtevstages; // 4
uid->values[0] |= bpmem.genMode.numtexgens << 4; // 4
uid->values[0] |= dstAlphaMode << 8; // 2
bool enablePL = g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting;
uid->values[0] |= enablePL << 10; // 1
if (!enablePL)
{
uid->values[0] |= xfregs.numTexGen.numTexGens << 11; // 4
}
AlphaTest::TEST_RESULT alphaPreTest = bpmem.alpha_test.TestResult();
uid->values[0] |= alphaPreTest << 15; // 2
// numtexgens should be <= 8
for (unsigned int i = 0; i < bpmem.genMode.numtexgens; ++i)
{
uid->values[0] |= xfregs.texMtxInfo[i].projection << (17+i); // 1
}
uid->values[1] = bpmem.genMode.numindstages; // 3
u32 indirectStagesUsed = 0;
for (unsigned int i = 0; i < bpmem.genMode.numindstages; ++i)
{
if (bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < bpmem.genMode.numindstages)
indirectStagesUsed |= (1 << bpmem.tevind[i].bt);
}
assert(indirectStagesUsed == (indirectStagesUsed & 0xF));
uid->values[1] |= indirectStagesUsed << 3; // 4;
for (unsigned int i = 0; i < bpmem.genMode.numindstages; ++i)
{
if (indirectStagesUsed & (1 << i))
{
uid->values[1] |= (bpmem.tevindref.getTexCoord(i) < bpmem.genMode.numtexgens) << (7 + 3*i); // 1
if (bpmem.tevindref.getTexCoord(i) < bpmem.genMode.numtexgens)
uid->values[1] |= bpmem.tevindref.getTexCoord(i) << (8 + 3*i); // 2
}
}
u32* ptr = &uid->values[2];
for (unsigned int i = 0; i < bpmem.genMode.numtevstages+1u; ++i)
{
StageHash(i, ptr);
ptr += 4; // max: ptr = &uid->values[66]
}
ptr[0] |= bpmem.alpha_test.comp0; // 3
ptr[0] |= bpmem.alpha_test.comp1 << 3; // 3
ptr[0] |= bpmem.alpha_test.logic << 6; // 2
ptr[0] |= bpmem.ztex2.op << 8; // 2
ptr[0] |= bpmem.zcontrol.early_ztest << 10; // 1
ptr[0] |= bpmem.zmode.testenable << 11; // 1
ptr[0] |= bpmem.zmode.updateenable << 12; // 1
if (dstAlphaMode != DSTALPHA_ALPHA_PASS)
{
ptr[0] |= bpmem.fog.c_proj_fsel.fsel << 13; // 3
if (bpmem.fog.c_proj_fsel.fsel != 0)
{
ptr[0] |= bpmem.fog.c_proj_fsel.proj << 16; // 1
ptr[0] |= bpmem.fogRange.Base.Enabled << 17; // 1
}
}
++ptr;
if (enablePL)
{
ptr += GetLightingShaderId(ptr);
*ptr++ = components;
}
uid->num_values = int(ptr - uid->values);
}
void GetSafePixelShaderId(PIXELSHADERUIDSAFE *uid, DSTALPHA_MODE dstAlphaMode, u32 components)
{
memset(uid->values, 0, sizeof(uid->values));
u32* ptr = uid->values;
*ptr++ = dstAlphaMode; // 0
*ptr++ = bpmem.genMode.hex; // 1
*ptr++ = bpmem.ztex2.hex; // 2
*ptr++ = bpmem.zcontrol.hex; // 3
*ptr++ = bpmem.zmode.hex; // 4
*ptr++ = g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting; // 5
*ptr++ = xfregs.numTexGen.hex; // 6
if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
*ptr++ = xfregs.color[0].hex;
*ptr++ = xfregs.alpha[0].hex;
*ptr++ = xfregs.color[1].hex;
*ptr++ = xfregs.alpha[1].hex;
*ptr++ = components;
}
for (unsigned int i = 0; i < 8; ++i)
*ptr++ = xfregs.texMtxInfo[i].hex; // 7-14
for (unsigned int i = 0; i < 16; ++i)
*ptr++ = bpmem.tevind[i].hex; // 15-30
*ptr++ = bpmem.tevindref.hex; // 31
for (u32 i = 0; i < bpmem.genMode.numtevstages+1u; ++i) // up to 16 times
{
*ptr++ = bpmem.combiners[i].colorC.hex; // 32+5*i
*ptr++ = bpmem.combiners[i].alphaC.hex; // 33+5*i
*ptr++ = bpmem.tevind[i].hex; // 34+5*i
*ptr++ = bpmem.tevksel[i/2].hex; // 35+5*i
*ptr++ = bpmem.tevorders[i/2].hex; // 36+5*i
}
ptr = &uid->values[112];
*ptr++ = bpmem.alpha_test.hex; // 112
*ptr++ = bpmem.fog.c_proj_fsel.hex; // 113
*ptr++ = bpmem.fogRange.Base.hex; // 114
_assert_((ptr - uid->values) == uid->GetNumValues());
}
void ValidatePixelShaderIDs(API_TYPE api, PIXELSHADERUIDSAFE old_id, const std::string& old_code, DSTALPHA_MODE dstAlphaMode, u32 components)
{
if (!g_ActiveConfig.bEnableShaderDebugging)
return;
PIXELSHADERUIDSAFE new_id;
GetSafePixelShaderId(&new_id, dstAlphaMode, components);
if (!(old_id == new_id))
{
std::string new_code(GeneratePixelShaderCode(dstAlphaMode, api, components));
if (old_code != new_code)
{
_assert_(old_id.GetNumValues() == new_id.GetNumValues());
char msg[8192];
char* ptr = msg;
ptr += sprintf(ptr, "Pixel shader IDs matched but unique IDs did not!\nUnique IDs (old <-> new):\n");
const int N = new_id.GetNumValues();
for (int i = 0; i < N/2; ++i)
ptr += sprintf(ptr, "%02d, %08X %08X | %08X %08X\n", 2*i, old_id.values[2*i], old_id.values[2*i+1],
new_id.values[2*i], new_id.values[2*i+1]);
if (N % 2)
ptr += sprintf(ptr, "%02d, %08X | %08X\n", N-1, old_id.values[N-1], new_id.values[N-1]);
static int num_failures = 0;
char szTemp[MAX_PATH];
sprintf(szTemp, "%spsuid_mismatch_%04i.txt", File::GetUserPath(D_DUMP_IDX).c_str(), num_failures++);
std::ofstream file;
OpenFStream(file, szTemp, std::ios_base::out);
file << msg;
file << "\n\nOld shader code:\n" << old_code;
file << "\n\nNew shader code:\n" << new_code;
file.close();
PanicAlert("Unique pixel shader ID mismatch!\n\nReport this to the devs, along with the contents of %s.", szTemp);
}
}
}
// old tev->pixelshader notes
//
// color for this stage (alpha, color) is given by bpmem.tevorders[0].colorchan0
// konstant for this stage (alpha, color) is given by bpmem.tevksel
// inputs are given by bpmem.combiners[0].colorC.a/b/c/d << could be current channel color
// according to GXTevColorArg table above
// output is given by .outreg
// tevtemp is set according to swapmodetables and
static void WriteStage(char *&p, int n, API_TYPE ApiType);
static void SampleTexture(char *&p, const char *destination, const char *texcoords, const char *texswap, int texmap, API_TYPE ApiType);
// static void WriteAlphaCompare(char *&p, int num, int comp);
static void WriteAlphaTest(char *&p, API_TYPE ApiType,DSTALPHA_MODE dstAlphaMode, bool per_pixel_depth);
static void WriteFog(char *&p);
static const char *tevKSelTableC[] = // KCSEL
{
"1.0f,1.0f,1.0f", // 1 = 0x00
"0.875f,0.875f,0.875f", // 7_8 = 0x01
"0.75f,0.75f,0.75f", // 3_4 = 0x02
"0.625f,0.625f,0.625f", // 5_8 = 0x03
"0.5f,0.5f,0.5f", // 1_2 = 0x04
"0.375f,0.375f,0.375f", // 3_8 = 0x05
"0.25f,0.25f,0.25f", // 1_4 = 0x06
"0.125f,0.125f,0.125f", // 1_8 = 0x07
"ERROR1", // 0x08
"ERROR2", // 0x09
"ERROR3", // 0x0a
"ERROR4", // 0x0b
I_KCOLORS"[0].rgb", // K0 = 0x0C
I_KCOLORS"[1].rgb", // K1 = 0x0D
I_KCOLORS"[2].rgb", // K2 = 0x0E
I_KCOLORS"[3].rgb", // K3 = 0x0F
I_KCOLORS"[0].rrr", // K0_R = 0x10
I_KCOLORS"[1].rrr", // K1_R = 0x11
I_KCOLORS"[2].rrr", // K2_R = 0x12
I_KCOLORS"[3].rrr", // K3_R = 0x13
I_KCOLORS"[0].ggg", // K0_G = 0x14
I_KCOLORS"[1].ggg", // K1_G = 0x15
I_KCOLORS"[2].ggg", // K2_G = 0x16
I_KCOLORS"[3].ggg", // K3_G = 0x17
I_KCOLORS"[0].bbb", // K0_B = 0x18
I_KCOLORS"[1].bbb", // K1_B = 0x19
I_KCOLORS"[2].bbb", // K2_B = 0x1A
I_KCOLORS"[3].bbb", // K3_B = 0x1B
I_KCOLORS"[0].aaa", // K0_A = 0x1C
I_KCOLORS"[1].aaa", // K1_A = 0x1D
I_KCOLORS"[2].aaa", // K2_A = 0x1E
I_KCOLORS"[3].aaa", // K3_A = 0x1F
};
static const char *tevKSelTableA[] = // KASEL
{
"1.0f", // 1 = 0x00
"0.875f",// 7_8 = 0x01
"0.75f", // 3_4 = 0x02
"0.625f",// 5_8 = 0x03
"0.5f", // 1_2 = 0x04
"0.375f",// 3_8 = 0x05
"0.25f", // 1_4 = 0x06
"0.125f",// 1_8 = 0x07
"ERROR5", // 0x08
"ERROR6", // 0x09
"ERROR7", // 0x0a
"ERROR8", // 0x0b
"ERROR9", // 0x0c
"ERROR10", // 0x0d
"ERROR11", // 0x0e
"ERROR12", // 0x0f
I_KCOLORS"[0].r", // K0_R = 0x10
I_KCOLORS"[1].r", // K1_R = 0x11
I_KCOLORS"[2].r", // K2_R = 0x12
I_KCOLORS"[3].r", // K3_R = 0x13
I_KCOLORS"[0].g", // K0_G = 0x14
I_KCOLORS"[1].g", // K1_G = 0x15
I_KCOLORS"[2].g", // K2_G = 0x16
I_KCOLORS"[3].g", // K3_G = 0x17
I_KCOLORS"[0].b", // K0_B = 0x18
I_KCOLORS"[1].b", // K1_B = 0x19
I_KCOLORS"[2].b", // K2_B = 0x1A
I_KCOLORS"[3].b", // K3_B = 0x1B
I_KCOLORS"[0].a", // K0_A = 0x1C
I_KCOLORS"[1].a", // K1_A = 0x1D
I_KCOLORS"[2].a", // K2_A = 0x1E
I_KCOLORS"[3].a", // K3_A = 0x1F
};
static const char *tevScaleTable[] = // CS
{
"1.0f", // SCALE_1
"2.0f", // SCALE_2
"4.0f", // SCALE_4
"0.5f", // DIVIDE_2
};
static const char *tevBiasTable[] = // TB
{
"", // ZERO,
"+0.5f", // ADDHALF,
"-0.5f", // SUBHALF,
"",
};
static const char *tevOpTable[] = { // TEV
"+", // TEVOP_ADD = 0,
"-", // TEVOP_SUB = 1,
};
static const char *tevCInputTable[] = // CC
{
"(prev.rgb)", // CPREV,
"(prev.aaa)", // APREV,
"(c0.rgb)", // C0,
"(c0.aaa)", // A0,
"(c1.rgb)", // C1,
"(c1.aaa)", // A1,
"(c2.rgb)", // C2,
"(c2.aaa)", // A2,
"(textemp.rgb)", // TEXC,
"(textemp.aaa)", // TEXA,
"(rastemp.rgb)", // RASC,
"(rastemp.aaa)", // RASA,
"float3(1.0f, 1.0f, 1.0f)", // ONE
"float3(0.5f, 0.5f, 0.5f)", // HALF
"(konsttemp.rgb)", //"konsttemp.rgb", // KONST
"float3(0.0f, 0.0f, 0.0f)", // ZERO
///added extra values to map clamped values
"(cprev.rgb)", // CPREV,
"(cprev.aaa)", // APREV,
"(cc0.rgb)", // C0,
"(cc0.aaa)", // A0,
"(cc1.rgb)", // C1,
"(cc1.aaa)", // A1,
"(cc2.rgb)", // C2,
"(cc2.aaa)", // A2,
"(textemp.rgb)", // TEXC,
"(textemp.aaa)", // TEXA,
"(crastemp.rgb)", // RASC,
"(crastemp.aaa)", // RASA,
"float3(1.0f, 1.0f, 1.0f)", // ONE
"float3(0.5f, 0.5f, 0.5f)", // HALF
"(ckonsttemp.rgb)", //"konsttemp.rgb", // KONST
"float3(0.0f, 0.0f, 0.0f)", // ZERO
"PADERROR1", "PADERROR2", "PADERROR3", "PADERROR4"
};
static const char *tevAInputTable[] = // CA
{
"prev", // APREV,
"c0", // A0,
"c1", // A1,
"c2", // A2,
"textemp", // TEXA,
"rastemp", // RASA,
"konsttemp", // KONST, (hw1 had quarter)
"float4(0.0f, 0.0f, 0.0f, 0.0f)", // ZERO
///added extra values to map clamped values
"cprev", // APREV,
"cc0", // A0,
"cc1", // A1,
"cc2", // A2,
"textemp", // TEXA,
"crastemp", // RASA,
"ckonsttemp", // KONST, (hw1 had quarter)
"float4(0.0f, 0.0f, 0.0f, 0.0f)", // ZERO
"PADERROR5", "PADERROR6", "PADERROR7", "PADERROR8",
"PADERROR9", "PADERROR10", "PADERROR11", "PADERROR12",
};
static const char *tevRasTable[] =
{
"colors_0",
"colors_1",
"ERROR13", //2
"ERROR14", //3
"ERROR15", //4
"float4(alphabump,alphabump,alphabump,alphabump)", // use bump alpha
"(float4(alphabump,alphabump,alphabump,alphabump)*(255.0f/248.0f))", //normalized
"float4(0.0f, 0.0f, 0.0f, 0.0f)", // zero
};
//static const char *tevTexFunc[] = { "tex2D", "texRECT" };
static const char *tevCOutputTable[] = { "prev.rgb", "c0.rgb", "c1.rgb", "c2.rgb" };
static const char *tevAOutputTable[] = { "prev.a", "c0.a", "c1.a", "c2.a" };
static const char *tevIndAlphaSel[] = {"", "x", "y", "z"};
//static const char *tevIndAlphaScale[] = {"", "*32", "*16", "*8"};
static const char *tevIndAlphaScale[] = {"*(248.0f/255.0f)", "*(224.0f/255.0f)", "*(240.0f/255.0f)", "*(248.0f/255.0f)"};
static const char *tevIndBiasField[] = {"", "x", "y", "xy", "z", "xz", "yz", "xyz"}; // indexed by bias
static const char *tevIndBiasAdd[] = {"-128.0f", "1.0f", "1.0f", "1.0f" }; // indexed by fmt
static const char *tevIndWrapStart[] = {"0.0f", "256.0f", "128.0f", "64.0f", "32.0f", "16.0f", "0.001f" };
static const char *tevIndFmtScale[] = {"255.0f", "31.0f", "15.0f", "7.0f" };
#define WRITE p+=sprintf
static char swapModeTable[4][5];
static char text[16384];
struct RegisterState
{
bool ColorNeedOverflowControl;
bool AlphaNeedOverflowControl;
bool AuxStored;
};
static RegisterState RegisterStates[4];
static void BuildSwapModeTable()
{
static const char *swapColors = "rgba";
for (int i = 0; i < 4; i++)
{
swapModeTable[i][0] = swapColors[bpmem.tevksel[i*2].swap1];
swapModeTable[i][1] = swapColors[bpmem.tevksel[i*2].swap2];
swapModeTable[i][2] = swapColors[bpmem.tevksel[i*2+1].swap1];
swapModeTable[i][3] = swapColors[bpmem.tevksel[i*2+1].swap2];
swapModeTable[i][4] = 0;
}
}
const char* WriteRegister(API_TYPE ApiType, const char *prefix, const u32 num)
{
if (ApiType == API_OPENGL)
return ""; // Nothing to do here
static char result[64];
sprintf(result, " : register(%s%d)", prefix, num);
return result;
}
const char *WriteLocation(API_TYPE ApiType)
{
if (g_ActiveConfig.backend_info.bSupportsGLSLUBO)
return "";
static char result[64];
sprintf(result, "uniform ");
return result;
}
const char *GeneratePixelShaderCode(DSTALPHA_MODE dstAlphaMode, API_TYPE ApiType, u32 components)
{
setlocale(LC_NUMERIC, "C"); // Reset locale for compilation
text[sizeof(text) - 1] = 0x7C; // canary
BuildSwapModeTable(); // Needed for WriteStage
int numStages = bpmem.genMode.numtevstages + 1;
int numTexgen = bpmem.genMode.numtexgens;
bool per_pixel_depth = bpmem.ztex2.op != ZTEXTURE_DISABLE && !bpmem.zcontrol.early_ztest && bpmem.zmode.testenable;
char *p = text;
WRITE(p, "//Pixel Shader for TEV stages\n");
WRITE(p, "//%i TEV stages, %i texgens, XXX IND stages\n",
numStages, numTexgen/*, bpmem.genMode.numindstages*/);
int nIndirectStagesUsed = 0;
if (bpmem.genMode.numindstages > 0)
{
for (int i = 0; i < numStages; ++i)
{
if (bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < bpmem.genMode.numindstages)
nIndirectStagesUsed |= 1 << bpmem.tevind[i].bt;
}
}
if (ApiType == API_OPENGL)
{
// A function here
// Fmod implementation gleaned from Nvidia
// At http://http.developer.nvidia.com/Cg/fmod.html
WRITE(p, "float fmod( float x, float y )\n");
WRITE(p, "{\n");
WRITE(p, "\tfloat z = fract( abs( x / y) ) * abs( y );\n");
WRITE(p, "\treturn (x < 0) ? -z : z;\n");
WRITE(p, "}\n");
for (int i = 0; i < 8; ++i)
WRITE(p, "uniform sampler2D samp%d;\n", i);
}
else
{
// Declare samplers
if (ApiType != API_D3D11)
{
WRITE(p, "uniform sampler2D ");
}
else
{
WRITE(p, "sampler ");
}
bool bfirst = true;
for (int i = 0; i < 8; ++i)
{
WRITE(p, "%s samp%d %s", bfirst?"":",", i, WriteRegister(ApiType, "s", i));
bfirst = false;
}
WRITE(p, ";\n");
if (ApiType == API_D3D11)
{
WRITE(p, "Texture2D ");
bfirst = true;
for (int i = 0; i < 8; ++i)
{
WRITE(p, "%s Tex%d : register(t%d)", bfirst?"":",", i, i);
bfirst = false;
}
WRITE(p, ";\n");
}
}
WRITE(p, "\n");
if (g_ActiveConfig.backend_info.bSupportsGLSLUBO)
WRITE(p, "layout(std140) uniform PSBlock {\n");
WRITE(p, "\t%sfloat4 " I_COLORS"[4] %s;\n", WriteLocation(ApiType), WriteRegister(ApiType, "c", C_COLORS));
WRITE(p, "\t%sfloat4 " I_KCOLORS"[4] %s;\n", WriteLocation(ApiType), WriteRegister(ApiType, "c", C_KCOLORS));
WRITE(p, "\t%sfloat4 " I_ALPHA"[1] %s;\n", WriteLocation(ApiType), WriteRegister(ApiType, "c", C_ALPHA));
WRITE(p, "\t%sfloat4 " I_TEXDIMS"[8] %s;\n", WriteLocation(ApiType), WriteRegister(ApiType, "c", C_TEXDIMS));
WRITE(p, "\t%sfloat4 " I_ZBIAS"[2] %s;\n", WriteLocation(ApiType), WriteRegister(ApiType, "c", C_ZBIAS));
WRITE(p, "\t%sfloat4 " I_INDTEXSCALE"[2] %s;\n", WriteLocation(ApiType), WriteRegister(ApiType, "c", C_INDTEXSCALE));
WRITE(p, "\t%sfloat4 " I_INDTEXMTX"[6] %s;\n", WriteLocation(ApiType), WriteRegister(ApiType, "c", C_INDTEXMTX));
WRITE(p, "\t%sfloat4 " I_FOG"[3] %s;\n", WriteLocation(ApiType), WriteRegister(ApiType, "c", C_FOG));
// For pixel lighting
WRITE(p, "\t%sfloat4 " I_PLIGHTS"[40] %s;\n", WriteLocation(ApiType), WriteRegister(ApiType, "c", C_PLIGHTS));
WRITE(p, "\t%sfloat4 " I_PMATERIALS"[4] %s;\n", WriteLocation(ApiType), WriteRegister(ApiType, "c", C_PMATERIALS));
if (g_ActiveConfig.backend_info.bSupportsGLSLUBO)
WRITE(p, "};\n");
if (ApiType == API_OPENGL)
{
WRITE(p, "COLOROUT(ocol0)\n");
if (dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
WRITE(p, "COLOROUT(ocol1)\n");
if (per_pixel_depth)
WRITE(p, "#define depth gl_FragDepth\n");
WRITE(p, "float4 rawpos = gl_FragCoord;\n");
WRITE(p, "VARYIN float4 colors_02;\n");
WRITE(p, "VARYIN float4 colors_12;\n");
WRITE(p, "float4 colors_0 = colors_02;\n");
WRITE(p, "float4 colors_1 = colors_12;\n");
// compute window position if needed because binding semantic WPOS is not widely supported
// Let's set up attributes
if (xfregs.numTexGen.numTexGens < 7)
{
for (int i = 0; i < 8; ++i)
{
WRITE(p, "VARYIN float3 uv%d_2;\n", i);
WRITE(p, "float3 uv%d = uv%d_2;\n", i, i);
}
WRITE(p, "VARYIN float4 clipPos_2;\n");
WRITE(p, "float4 clipPos = clipPos_2;\n");
if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
WRITE(p, "VARYIN float4 Normal_2;\n");
WRITE(p, "float4 Normal = Normal_2;\n");
}
}
else
{
// wpos is in w of first 4 texcoords
if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
for (int i = 0; i < 8; ++i)
{
WRITE(p, "VARYIN float4 uv%d_2;\n", i);
WRITE(p, "float4 uv%d = uv%d_2;\n", i, i);
}
}
else
{
for (unsigned int i = 0; i < xfregs.numTexGen.numTexGens; ++i)
{
WRITE(p, "VARYIN float%d uv%d_2;\n", i < 4 ? 4 : 3 , i);
WRITE(p, "float%d uv%d = uv%d_2;\n", i < 4 ? 4 : 3 , i, i);
}
}
WRITE(p, "float4 clipPos;\n");
}
WRITE(p, "void main()\n{\n");
}
else
{
WRITE(p, "void main(\n");
if (ApiType != API_D3D11)
{
WRITE(p, " out float4 ocol0 : COLOR0,%s%s\n in float4 rawpos : %s,\n",
dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND ? "\n out float4 ocol1 : COLOR1," : "",
per_pixel_depth ? "\n out float depth : DEPTH," : "",
ApiType & API_D3D9_SM20 ? "POSITION" : "VPOS");
}
else
{
WRITE(p, " out float4 ocol0 : SV_Target0,%s%s\n in float4 rawpos : SV_Position,\n",
dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND ? "\n out float4 ocol1 : SV_Target1," : "",
per_pixel_depth ? "\n out float depth : SV_Depth," : "");
}
// "centroid" attribute is only supported by D3D11
const char* optCentroid = (ApiType == API_D3D11 ? "centroid" : "");
WRITE(p, " in %s float4 colors_0 : COLOR0,\n", optCentroid);
WRITE(p, " in %s float4 colors_1 : COLOR1", optCentroid);
// compute window position if needed because binding semantic WPOS is not widely supported
if (numTexgen < 7)
{
for (int i = 0; i < numTexgen; ++i)
WRITE(p, ",\n in %s float3 uv%d : TEXCOORD%d", optCentroid, i, i);
WRITE(p, ",\n in %s float4 clipPos : TEXCOORD%d", optCentroid, numTexgen);
if(g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
WRITE(p, ",\n in %s float4 Normal : TEXCOORD%d", optCentroid, numTexgen + 1);
WRITE(p, " ) {\n");
}
else
{
// wpos is in w of first 4 texcoords
if(g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
for (int i = 0; i < 8; ++i)
WRITE(p, ",\n in float4 uv%d : TEXCOORD%d", i, i);
}
else
{
for (unsigned int i = 0; i < xfregs.numTexGen.numTexGens; ++i)
WRITE(p, ",\n in float%d uv%d : TEXCOORD%d", i < 4 ? 4 : 3 , i, i);
}
WRITE(p, " ) {\n");
WRITE(p, "\tfloat4 clipPos = float4(0.0f, 0.0f, 0.0f, 0.0f);");
}
}
WRITE(p, " float4 c0 = " I_COLORS"[1], c1 = " I_COLORS"[2], c2 = " I_COLORS"[3], prev = float4(0.0f, 0.0f, 0.0f, 0.0f), textemp = float4(0.0f, 0.0f, 0.0f, 0.0f), rastemp = float4(0.0f, 0.0f, 0.0f, 0.0f), konsttemp = float4(0.0f, 0.0f, 0.0f, 0.0f);\n"
" float3 comp16 = float3(1.0f, 255.0f, 0.0f), comp24 = float3(1.0f, 255.0f, 255.0f*255.0f);\n"
" float alphabump=0.0f;\n"
" float3 tevcoord=float3(0.0f, 0.0f, 0.0f);\n"
" float2 wrappedcoord=float2(0.0f,0.0f), tempcoord=float2(0.0f,0.0f);\n"
" float4 cc0=float4(0.0f,0.0f,0.0f,0.0f), cc1=float4(0.0f,0.0f,0.0f,0.0f);\n"
" float4 cc2=float4(0.0f,0.0f,0.0f,0.0f), cprev=float4(0.0f,0.0f,0.0f,0.0f);\n"
" float4 crastemp=float4(0.0f,0.0f,0.0f,0.0f),ckonsttemp=float4(0.0f,0.0f,0.0f,0.0f);\n\n");
if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
if (xfregs.numTexGen.numTexGens < 7)
{
WRITE(p,"\tfloat3 _norm0 = normalize(Normal.xyz);\n\n");
WRITE(p,"\tfloat3 pos = float3(clipPos.x,clipPos.y,Normal.w);\n");
}
else
{
WRITE(p,"\tfloat3 _norm0 = normalize(float3(uv4.w,uv5.w,uv6.w));\n\n");
WRITE(p,"\tfloat3 pos = float3(uv0.w,uv1.w,uv7.w);\n");
}
WRITE(p, "\tfloat4 mat, lacc;\n"
"\tfloat3 ldir, h;\n"
"\tfloat dist, dist2, attn;\n");
p = GenerateLightingShader(p, components, I_PMATERIALS, I_PLIGHTS, "colors_", "colors_");
}
if (numTexgen < 7)
WRITE(p, "\tclipPos = float4(rawpos.x, rawpos.y, clipPos.z, clipPos.w);\n");
else
WRITE(p, "\tclipPos = float4(rawpos.x, rawpos.y, uv2.w, uv3.w);\n");
// HACK to handle cases where the tex gen is not enabled
if (numTexgen == 0)
{
WRITE(p, "\tfloat3 uv0 = float3(0.0f, 0.0f, 0.0f);\n");
}
else
{
for (int i = 0; i < numTexgen; ++i)
{
// optional perspective divides
if (xfregs.texMtxInfo[i].projection == XF_TEXPROJ_STQ)
{
WRITE(p, "\tif (uv%d.z != 0.0f)", i);
WRITE(p, "\t\tuv%d.xy = uv%d.xy / uv%d.z;\n", i, i, i);
}
WRITE(p, "uv%d.xy = uv%d.xy * " I_TEXDIMS"[%d].zw;\n", i, i, i);
}
}
// indirect texture map lookup
for (u32 i = 0; i < bpmem.genMode.numindstages; ++i)
{
if (nIndirectStagesUsed & (1<<i))
{
int texcoord = bpmem.tevindref.getTexCoord(i);
if (texcoord < numTexgen)
WRITE(p, "\ttempcoord = uv%d.xy * " I_INDTEXSCALE"[%d].%s;\n", texcoord, i/2, (i&1)?"zw":"xy");
else
WRITE(p, "\ttempcoord = float2(0.0f, 0.0f);\n");
char buffer[32];
sprintf(buffer, "float3 indtex%d", i);
SampleTexture(p, buffer, "tempcoord", "abg", bpmem.tevindref.getTexMap(i), ApiType);
}
}
RegisterStates[0].AlphaNeedOverflowControl = false;
RegisterStates[0].ColorNeedOverflowControl = false;
RegisterStates[0].AuxStored = false;
for(int i = 1; i < 4; i++)
{
RegisterStates[i].AlphaNeedOverflowControl = true;
RegisterStates[i].ColorNeedOverflowControl = true;
RegisterStates[i].AuxStored = false;
}
for (int i = 0; i < numStages; i++)
WriteStage(p, i, ApiType); //build the equation for this stage
if (numStages)
{
// The results of the last texenv stage are put onto the screen,
// regardless of the used destination register
if(bpmem.combiners[numStages - 1].colorC.dest != 0)
{
bool retrieveFromAuxRegister = !RegisterStates[bpmem.combiners[numStages - 1].colorC.dest].ColorNeedOverflowControl && RegisterStates[bpmem.combiners[numStages - 1].colorC.dest].AuxStored;
WRITE(p, "\tprev.rgb = %s%s;\n", retrieveFromAuxRegister ? "c" : "" , tevCOutputTable[bpmem.combiners[numStages - 1].colorC.dest]);
RegisterStates[0].ColorNeedOverflowControl = RegisterStates[bpmem.combiners[numStages - 1].colorC.dest].ColorNeedOverflowControl;
}
if(bpmem.combiners[numStages - 1].alphaC.dest != 0)
{
bool retrieveFromAuxRegister = !RegisterStates[bpmem.combiners[numStages - 1].alphaC.dest].AlphaNeedOverflowControl && RegisterStates[bpmem.combiners[numStages - 1].alphaC.dest].AuxStored;
WRITE(p, "\tprev.a = %s%s;\n", retrieveFromAuxRegister ? "c" : "" , tevAOutputTable[bpmem.combiners[numStages - 1].alphaC.dest]);
RegisterStates[0].AlphaNeedOverflowControl = RegisterStates[bpmem.combiners[numStages - 1].alphaC.dest].AlphaNeedOverflowControl;
}
}
// emulation of unsigned 8 overflow when casting if needed
if(RegisterStates[0].AlphaNeedOverflowControl || RegisterStates[0].ColorNeedOverflowControl)
WRITE(p, "\tprev = frac(prev * (255.0f/256.0f)) * (256.0f/255.0f);\n");
AlphaTest::TEST_RESULT Pretest = bpmem.alpha_test.TestResult();
if (Pretest == AlphaTest::UNDETERMINED)
WriteAlphaTest(p, ApiType, dstAlphaMode, per_pixel_depth);
// the screen space depth value = far z + (clip z / clip w) * z range
if(ApiType == API_OPENGL || ApiType == API_D3D11)
WRITE(p, "float zCoord = rawpos.z;\n");
else
// dx9 doesn't support 4 component position, so we have to calculate it again
WRITE(p, "float zCoord = " I_ZBIAS"[1].x + (clipPos.z / clipPos.w) * " I_ZBIAS"[1].y;\n");
// depth texture can safely be ignored if the result won't be written to the depth buffer (early_ztest) and isn't used for fog either
bool skip_ztexture = !per_pixel_depth && !bpmem.fog.c_proj_fsel.fsel;
if (bpmem.ztex2.op != ZTEXTURE_DISABLE && !skip_ztexture)
{
// use the texture input of the last texture stage (textemp), hopefully this has been read and is in correct format...
WRITE(p, "zCoord = dot(" I_ZBIAS"[0].xyzw, textemp.xyzw) + " I_ZBIAS"[1].w %s;\n",
(bpmem.ztex2.op == ZTEXTURE_ADD) ? "+ zCoord" : "");
// scale to make result from frac correct
WRITE(p, "zCoord = zCoord * (16777215.0f/16777216.0f);\n");
WRITE(p, "zCoord = frac(zCoord);\n");
WRITE(p, "zCoord = zCoord * (16777216.0f/16777215.0f);\n");
// Note: depth texture out put is only written to depth buffer if late depth test is used
if (per_pixel_depth)
WRITE(p, "depth = zCoord;\n");
}
if (dstAlphaMode == DSTALPHA_ALPHA_PASS)
{
WRITE(p, "\tocol0 = float4(prev.rgb, " I_ALPHA"[0].a);\n");
}
else
{
WriteFog(p);
WRITE(p, "\tocol0 = prev;\n");
}
// Use dual-source color blending to perform dst alpha in a
// single pass
if (dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
{
if(ApiType & API_D3D9)
{
// alpha component must be 0 or the shader will not compile (Direct3D 9Ex restriction)
// Colors will be blended against the color from ocol1 in D3D 9...
WRITE(p, "\tocol1 = float4(prev.a, prev.a, prev.a, 0.0f);\n");
}
else
{
// Colors will be blended against the alpha from ocol1...
WRITE(p, "\tocol1 = prev;\n");
}
// ...and the alpha from ocol0 will be written to the framebuffer.
WRITE(p, "\tocol0.a = " I_ALPHA"[0].a;\n");
}
WRITE(p, "}\n");
if (text[sizeof(text) - 1] != 0x7C)
PanicAlert("PixelShader generator - buffer too small, canary has been eaten!");
setlocale(LC_NUMERIC, ""); // restore locale
return text;
}
//table with the color compare operations
static const char *TEVCMPColorOPTable[16] =
{
"float3(0.0f, 0.0f, 0.0f)",//0
"float3(0.0f, 0.0f, 0.0f)",//1
"float3(0.0f, 0.0f, 0.0f)",//2
"float3(0.0f, 0.0f, 0.0f)",//3
"float3(0.0f, 0.0f, 0.0f)",//4
"float3(0.0f, 0.0f, 0.0f)",//5
"float3(0.0f, 0.0f, 0.0f)",//6
"float3(0.0f, 0.0f, 0.0f)",//7
" %s + ((%s.r >= %s.r + (0.25f/255.0f)) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_R8_GT 8
" %s + ((abs(%s.r - %s.r) < (0.5f/255.0f)) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_R8_EQ 9
" %s + (( dot(%s.rgb, comp16) >= (dot(%s.rgb, comp16) + (0.25f/255.0f))) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_GR16_GT 10
" %s + (abs(dot(%s.rgb, comp16) - dot(%s.rgb, comp16)) < (0.5f/255.0f) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_GR16_EQ 11
" %s + (( dot(%s.rgb, comp24) >= (dot(%s.rgb, comp24) + (0.25f/255.0f))) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_BGR24_GT 12
" %s + (abs(dot(%s.rgb, comp24) - dot(%s.rgb, comp24)) < (0.5f/255.0f) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_BGR24_EQ 13
" %s + (max(sign(%s.rgb - %s.rgb - (0.25f/255.0f)), float3(0.0f, 0.0f, 0.0f)) * %s)",//#define TEVCMP_RGB8_GT 14
" %s + ((float3(1.0f, 1.0f, 1.0f) - max(sign(abs(%s.rgb - %s.rgb) - (0.5f/255.0f)), float3(0.0f, 0.0f, 0.0f))) * %s)"//#define TEVCMP_RGB8_EQ 15
};
//table with the alpha compare operations
static const char *TEVCMPAlphaOPTable[16] =
{
"0.0f",//0
"0.0f",//1
"0.0f",//2
"0.0f",//3
"0.0f",//4
"0.0f",//5
"0.0f",//6
"0.0f",//7
" %s.a + ((%s.r >= (%s.r + (0.25f/255.0f))) ? %s.a : 0.0f)",//#define TEVCMP_R8_GT 8
" %s.a + (abs(%s.r - %s.r) < (0.5f/255.0f) ? %s.a : 0.0f)",//#define TEVCMP_R8_EQ 9
" %s.a + ((dot(%s.rgb, comp16) >= (dot(%s.rgb, comp16) + (0.25f/255.0f))) ? %s.a : 0.0f)",//#define TEVCMP_GR16_GT 10
" %s.a + (abs(dot(%s.rgb, comp16) - dot(%s.rgb, comp16)) < (0.5f/255.0f) ? %s.a : 0.0f)",//#define TEVCMP_GR16_EQ 11
" %s.a + ((dot(%s.rgb, comp24) >= (dot(%s.rgb, comp24) + (0.25f/255.0f))) ? %s.a : 0.0f)",//#define TEVCMP_BGR24_GT 12
" %s.a + (abs(dot(%s.rgb, comp24) - dot(%s.rgb, comp24)) < (0.5f/255.0f) ? %s.a : 0.0f)",//#define TEVCMP_BGR24_EQ 13
" %s.a + ((%s.a >= (%s.a + (0.25f/255.0f))) ? %s.a : 0.0f)",//#define TEVCMP_A8_GT 14
" %s.a + (abs(%s.a - %s.a) < (0.5f/255.0f) ? %s.a : 0.0f)"//#define TEVCMP_A8_EQ 15
};
static void WriteStage(char *&p, int n, API_TYPE ApiType)
{
int texcoord = bpmem.tevorders[n/2].getTexCoord(n&1);
bool bHasTexCoord = (u32)texcoord < bpmem.genMode.numtexgens;
bool bHasIndStage = bpmem.tevind[n].IsActive() && bpmem.tevind[n].bt < bpmem.genMode.numindstages;
// HACK to handle cases where the tex gen is not enabled
if (!bHasTexCoord)
texcoord = 0;
WRITE(p, "// TEV stage %d\n", n);
if (bHasIndStage)
{
WRITE(p, "// indirect op\n");
// perform the indirect op on the incoming regular coordinates using indtex%d as the offset coords
if (bpmem.tevind[n].bs != ITBA_OFF)
{
WRITE(p, "alphabump = indtex%d.%s %s;\n",
bpmem.tevind[n].bt,
tevIndAlphaSel[bpmem.tevind[n].bs],
tevIndAlphaScale[bpmem.tevind[n].fmt]);
}
// format
WRITE(p, "float3 indtevcrd%d = indtex%d * %s;\n", n, bpmem.tevind[n].bt, tevIndFmtScale[bpmem.tevind[n].fmt]);
// bias
if (bpmem.tevind[n].bias != ITB_NONE )
WRITE(p, "indtevcrd%d.%s += %s;\n", n, tevIndBiasField[bpmem.tevind[n].bias], tevIndBiasAdd[bpmem.tevind[n].fmt]);
// multiply by offset matrix and scale
if (bpmem.tevind[n].mid != 0)
{
if (bpmem.tevind[n].mid <= 3)
{
int mtxidx = 2*(bpmem.tevind[n].mid-1);
WRITE(p, "float2 indtevtrans%d = float2(dot(" I_INDTEXMTX"[%d].xyz, indtevcrd%d), dot(" I_INDTEXMTX"[%d].xyz, indtevcrd%d));\n",
n, mtxidx, n, mtxidx+1, n);
}
else if (bpmem.tevind[n].mid <= 7 && bHasTexCoord)
{ // s matrix
_assert_(bpmem.tevind[n].mid >= 5);
int mtxidx = 2*(bpmem.tevind[n].mid-5);
WRITE(p, "float2 indtevtrans%d = " I_INDTEXMTX"[%d].ww * uv%d.xy * indtevcrd%d.xx;\n", n, mtxidx, texcoord, n);
}
else if (bpmem.tevind[n].mid <= 11 && bHasTexCoord)
{ // t matrix
_assert_(bpmem.tevind[n].mid >= 9);
int mtxidx = 2*(bpmem.tevind[n].mid-9);
WRITE(p, "float2 indtevtrans%d = " I_INDTEXMTX"[%d].ww * uv%d.xy * indtevcrd%d.yy;\n", n, mtxidx, texcoord, n);
}
else
{
WRITE(p, "float2 indtevtrans%d = float2(0.0f, 0.0f);\n", n);
}
}
else
{
WRITE(p, "float2 indtevtrans%d = float2(0.0f, 0.0f);\n", n);
}
// ---------
// Wrapping
// ---------
// wrap S
if (bpmem.tevind[n].sw == ITW_OFF)
WRITE(p, "wrappedcoord.x = uv%d.x;\n", texcoord);
else if (bpmem.tevind[n].sw == ITW_0)
WRITE(p, "wrappedcoord.x = 0.0f;\n");
else
WRITE(p, "wrappedcoord.x = fmod( uv%d.x, %s );\n", texcoord, tevIndWrapStart[bpmem.tevind[n].sw]);
// wrap T
if (bpmem.tevind[n].tw == ITW_OFF)
WRITE(p, "wrappedcoord.y = uv%d.y;\n", texcoord);
else if (bpmem.tevind[n].tw == ITW_0)
WRITE(p, "wrappedcoord.y = 0.0f;\n");
else
WRITE(p, "wrappedcoord.y = fmod( uv%d.y, %s );\n", texcoord, tevIndWrapStart[bpmem.tevind[n].tw]);
if (bpmem.tevind[n].fb_addprev) // add previous tevcoord
WRITE(p, "tevcoord.xy += wrappedcoord + indtevtrans%d;\n", n);
else
WRITE(p, "tevcoord.xy = wrappedcoord + indtevtrans%d;\n", n);
}
TevStageCombiner::ColorCombiner &cc = bpmem.combiners[n].colorC;
TevStageCombiner::AlphaCombiner &ac = bpmem.combiners[n].alphaC;
if(cc.a == TEVCOLORARG_RASA || cc.a == TEVCOLORARG_RASC
|| cc.b == TEVCOLORARG_RASA || cc.b == TEVCOLORARG_RASC
|| cc.c == TEVCOLORARG_RASA || cc.c == TEVCOLORARG_RASC
|| cc.d == TEVCOLORARG_RASA || cc.d == TEVCOLORARG_RASC
|| ac.a == TEVALPHAARG_RASA || ac.b == TEVALPHAARG_RASA
|| ac.c == TEVALPHAARG_RASA || ac.d == TEVALPHAARG_RASA)
{
char *rasswap = swapModeTable[bpmem.combiners[n].alphaC.rswap];
WRITE(p, "rastemp = %s.%s;\n", tevRasTable[bpmem.tevorders[n / 2].getColorChan(n & 1)], rasswap);
WRITE(p, "crastemp = frac(rastemp * (255.0f/256.0f)) * (256.0f/255.0f);\n");
}
if (bpmem.tevorders[n/2].getEnable(n&1))
{
if (!bHasIndStage)
{
// calc tevcord
if (bHasTexCoord)
WRITE(p, "tevcoord.xy = uv%d.xy;\n", texcoord);
else
WRITE(p, "tevcoord.xy = float2(0.0f, 0.0f);\n");
}
char *texswap = swapModeTable[bpmem.combiners[n].alphaC.tswap];
int texmap = bpmem.tevorders[n/2].getTexMap(n&1);
SampleTexture(p, "textemp", "tevcoord", texswap, texmap, ApiType);
}
else
{
WRITE(p, "textemp = float4(1.0f, 1.0f, 1.0f, 1.0f);\n");
}
if (cc.a == TEVCOLORARG_KONST || cc.b == TEVCOLORARG_KONST || cc.c == TEVCOLORARG_KONST || cc.d == TEVCOLORARG_KONST
|| ac.a == TEVALPHAARG_KONST || ac.b == TEVALPHAARG_KONST || ac.c == TEVALPHAARG_KONST || ac.d == TEVALPHAARG_KONST)
{
int kc = bpmem.tevksel[n / 2].getKC(n & 1);
int ka = bpmem.tevksel[n / 2].getKA(n & 1);
WRITE(p, "konsttemp = float4(%s, %s);\n", tevKSelTableC[kc], tevKSelTableA[ka]);
if (kc > 7 || ka > 7)
{
WRITE(p, "ckonsttemp = frac(konsttemp * (255.0f/256.0f)) * (256.0f/255.0f);\n");
}
else
{
WRITE(p, "ckonsttemp = konsttemp;\n");
}
}
if(cc.a == TEVCOLORARG_CPREV || cc.a == TEVCOLORARG_APREV
|| cc.b == TEVCOLORARG_CPREV || cc.b == TEVCOLORARG_APREV
|| cc.c == TEVCOLORARG_CPREV || cc.c == TEVCOLORARG_APREV
|| ac.a == TEVALPHAARG_APREV || ac.b == TEVALPHAARG_APREV || ac.c == TEVALPHAARG_APREV)
{
if(RegisterStates[0].AlphaNeedOverflowControl || RegisterStates[0].ColorNeedOverflowControl)
{
WRITE(p, "cprev = frac(prev * (255.0f/256.0f)) * (256.0f/255.0f);\n");
RegisterStates[0].AlphaNeedOverflowControl = false;
RegisterStates[0].ColorNeedOverflowControl = false;
}
else
{
WRITE(p, "cprev = prev;\n");
}
RegisterStates[0].AuxStored = true;
}
if(cc.a == TEVCOLORARG_C0 || cc.a == TEVCOLORARG_A0
|| cc.b == TEVCOLORARG_C0 || cc.b == TEVCOLORARG_A0
|| cc.c == TEVCOLORARG_C0 || cc.c == TEVCOLORARG_A0
|| ac.a == TEVALPHAARG_A0 || ac.b == TEVALPHAARG_A0 || ac.c == TEVALPHAARG_A0)
{
if(RegisterStates[1].AlphaNeedOverflowControl || RegisterStates[1].ColorNeedOverflowControl)
{
WRITE(p, "cc0 = frac(c0 * (255.0f/256.0f)) * (256.0f/255.0f);\n");
RegisterStates[1].AlphaNeedOverflowControl = false;
RegisterStates[1].ColorNeedOverflowControl = false;
}
else
{
WRITE(p, "cc0 = c0;\n");
}
RegisterStates[1].AuxStored = true;
}
if(cc.a == TEVCOLORARG_C1 || cc.a == TEVCOLORARG_A1
|| cc.b == TEVCOLORARG_C1 || cc.b == TEVCOLORARG_A1
|| cc.c == TEVCOLORARG_C1 || cc.c == TEVCOLORARG_A1
|| ac.a == TEVALPHAARG_A1 || ac.b == TEVALPHAARG_A1 || ac.c == TEVALPHAARG_A1)
{
if(RegisterStates[2].AlphaNeedOverflowControl || RegisterStates[2].ColorNeedOverflowControl)
{
WRITE(p, "cc1 = frac(c1 * (255.0f/256.0f)) * (256.0f/255.0f);\n");
RegisterStates[2].AlphaNeedOverflowControl = false;
RegisterStates[2].ColorNeedOverflowControl = false;
}
else
{
WRITE(p, "cc1 = c1;\n");
}
RegisterStates[2].AuxStored = true;
}
if(cc.a == TEVCOLORARG_C2 || cc.a == TEVCOLORARG_A2
|| cc.b == TEVCOLORARG_C2 || cc.b == TEVCOLORARG_A2
|| cc.c == TEVCOLORARG_C2 || cc.c == TEVCOLORARG_A2
|| ac.a == TEVALPHAARG_A2 || ac.b == TEVALPHAARG_A2 || ac.c == TEVALPHAARG_A2)
{
if(RegisterStates[3].AlphaNeedOverflowControl || RegisterStates[3].ColorNeedOverflowControl)
{
WRITE(p, "cc2 = frac(c2 * (255.0f/256.0f)) * (256.0f/255.0f);\n");
RegisterStates[3].AlphaNeedOverflowControl = false;
RegisterStates[3].ColorNeedOverflowControl = false;
}
else
{
WRITE(p, "cc2 = c2;\n");
}
RegisterStates[3].AuxStored = true;
}
RegisterStates[cc.dest].ColorNeedOverflowControl = (cc.clamp == 0);
RegisterStates[cc.dest].AuxStored = false;
// combine the color channel
WRITE(p, "// color combine\n");
if (cc.clamp)
WRITE(p, "%s = saturate(", tevCOutputTable[cc.dest]);
else
WRITE(p, "%s = ", tevCOutputTable[cc.dest]);
// combine the color channel
if (cc.bias != TevBias_COMPARE) // if not compare
{
//normal color combiner goes here
if (cc.shift > TEVSCALE_1)
WRITE(p, "%s*(", tevScaleTable[cc.shift]);
if (!(cc.d == TEVCOLORARG_ZERO && cc.op == TEVOP_ADD))
WRITE(p, "%s%s", tevCInputTable[cc.d], tevOpTable[cc.op]);
if (cc.a == cc.b)
WRITE(p, "%s", tevCInputTable[cc.a + 16]);
else if (cc.c == TEVCOLORARG_ZERO)
WRITE(p, "%s", tevCInputTable[cc.a + 16]);
else if (cc.c == TEVCOLORARG_ONE)
WRITE(p, "%s", tevCInputTable[cc.b + 16]);
else if (cc.a == TEVCOLORARG_ZERO)
WRITE(p, "%s*%s", tevCInputTable[cc.b + 16], tevCInputTable[cc.c + 16]);
else if (cc.b == TEVCOLORARG_ZERO)
WRITE(p, "%s*(float3(1.0f, 1.0f, 1.0f)-%s)", tevCInputTable[cc.a + 16], tevCInputTable[cc.c + 16]);
else
WRITE(p, "lerp(%s, %s, %s)", tevCInputTable[cc.a + 16], tevCInputTable[cc.b + 16], tevCInputTable[cc.c + 16]);
WRITE(p, "%s", tevBiasTable[cc.bias]);
if (cc.shift > TEVSCALE_1)
WRITE(p, ")");
}
else
{
int cmp = (cc.shift<<1)|cc.op|8; // comparemode stored here
WRITE(p, TEVCMPColorOPTable[cmp],//lookup the function from the op table
tevCInputTable[cc.d],
tevCInputTable[cc.a + 16],
tevCInputTable[cc.b + 16],
tevCInputTable[cc.c + 16]);
}
if (cc.clamp)
WRITE(p, ")");
WRITE(p,";\n");
RegisterStates[ac.dest].AlphaNeedOverflowControl = (ac.clamp == 0);
RegisterStates[ac.dest].AuxStored = false;
// combine the alpha channel
WRITE(p, "// alpha combine\n");
if (ac.clamp)
WRITE(p, "%s = saturate(", tevAOutputTable[ac.dest]);
else
WRITE(p, "%s = ", tevAOutputTable[ac.dest]);
if (ac.bias != TevBias_COMPARE) // if not compare
{
//normal alpha combiner goes here
if (ac.shift > TEVSCALE_1)
WRITE(p, "%s*(", tevScaleTable[ac.shift]);
if (!(ac.d == TEVALPHAARG_ZERO && ac.op == TEVOP_ADD))
WRITE(p, "%s.a%s", tevAInputTable[ac.d], tevOpTable[ac.op]);
if (ac.a == ac.b)
WRITE(p, "%s.a", tevAInputTable[ac.a + 8]);
else if (ac.c == TEVALPHAARG_ZERO)
WRITE(p, "%s.a", tevAInputTable[ac.a + 8]);
else if (ac.a == TEVALPHAARG_ZERO)
WRITE(p, "%s.a*%s.a", tevAInputTable[ac.b + 8], tevAInputTable[ac.c + 8]);
else if (ac.b == TEVALPHAARG_ZERO)
WRITE(p, "%s.a*(1.0f-%s.a)", tevAInputTable[ac.a + 8], tevAInputTable[ac.c + 8]);
else
WRITE(p, "lerp(%s.a, %s.a, %s.a)", tevAInputTable[ac.a + 8], tevAInputTable[ac.b + 8], tevAInputTable[ac.c + 8]);
WRITE(p, "%s",tevBiasTable[ac.bias]);
if (ac.shift > 0)
WRITE(p, ")");
}
else
{
//compare alpha combiner goes here
int cmp = (ac.shift<<1)|ac.op|8; // comparemode stored here
WRITE(p, TEVCMPAlphaOPTable[cmp],
tevAInputTable[ac.d],
tevAInputTable[ac.a + 8],
tevAInputTable[ac.b + 8],
tevAInputTable[ac.c + 8]);
}
if (ac.clamp)
WRITE(p, ")");
WRITE(p, ";\n\n");
WRITE(p, "// TEV done\n");
}
void SampleTexture(char *&p, const char *destination, const char *texcoords, const char *texswap, int texmap, API_TYPE ApiType)
{
if (ApiType == API_D3D11)
WRITE(p, "%s=Tex%d.Sample(samp%d,%s.xy * " I_TEXDIMS"[%d].xy).%s;\n", destination, texmap,texmap, texcoords, texmap, texswap);
else
WRITE(p, "%s=%s(samp%d,%s.xy * " I_TEXDIMS"[%d].xy).%s;\n", destination, ApiType == API_OPENGL ? "texture" : "tex2D", texmap, texcoords, texmap, texswap);
}
static const char *tevAlphaFuncsTable[] =
{
"(false)", //ALPHACMP_NEVER 0
"(prev.a <= %s - (0.25f/255.0f))", //ALPHACMP_LESS 1
"(abs( prev.a - %s ) < (0.5f/255.0f))", //ALPHACMP_EQUAL 2
"(prev.a < %s + (0.25f/255.0f))", //ALPHACMP_LEQUAL 3
"(prev.a >= %s + (0.25f/255.0f))", //ALPHACMP_GREATER 4
"(abs( prev.a - %s ) >= (0.5f/255.0f))", //ALPHACMP_NEQUAL 5
"(prev.a > %s - (0.25f/255.0f))", //ALPHACMP_GEQUAL 6
"(true)" //ALPHACMP_ALWAYS 7
};
static const char *tevAlphaFunclogicTable[] =
{
" && ", // and
" || ", // or
" != ", // xor
" == " // xnor
};
static void WriteAlphaTest(char *&p, API_TYPE ApiType,DSTALPHA_MODE dstAlphaMode, bool per_pixel_depth)
{
static const char *alphaRef[2] =
{
I_ALPHA"[0].r",
I_ALPHA"[0].g"
};
// using discard then return works the same in cg and dx9 but not in dx11
WRITE(p, "\tif(!( ");
int compindex = bpmem.alpha_test.comp0;
WRITE(p, tevAlphaFuncsTable[compindex],alphaRef[0]);//lookup the first component from the alpha function table
WRITE(p, "%s", tevAlphaFunclogicTable[bpmem.alpha_test.logic]);//lookup the logic op
compindex = bpmem.alpha_test.comp1;
WRITE(p, tevAlphaFuncsTable[compindex],alphaRef[1]);//lookup the second component from the alpha function table
WRITE(p, ")) {\n");
WRITE(p, "\t\tocol0 = float4(0.0f, 0.0f, 0.0f, 0.0f);\n");
if (dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
WRITE(p, "\t\tocol1 = float4(0.0f, 0.0f, 0.0f, 0.0f);\n");
if(per_pixel_depth)
WRITE(p, "depth = 1.f;\n");
// HAXX: zcomploc (aka early_ztest) is a way to control whether depth test is done before
// or after texturing and alpha test. PC GPUs have no way to support this
// feature properly as of 2012: depth buffer and depth test are not
// programmable and the depth test is always done after texturing.
// Most importantly, PC GPUs do not allow writing to the z-buffer without
// writing a color value (unless color writing is disabled altogether).
// We implement "depth test before texturing" by discarding the fragment
// when the alpha test fail. This is not a correct implementation because
// even if the depth test fails the fragment could be alpha blended, but
// we don't have a choice.
if (!(bpmem.zcontrol.early_ztest && bpmem.zmode.updateenable))
{
WRITE(p, "\t\tdiscard;\n");
if (ApiType != API_D3D11)
WRITE(p, "\t\treturn;\n");
}
WRITE(p, "}\n");
}
static const char *tevFogFuncsTable[] =
{
"", // No Fog
"", // ?
"", // Linear
"", // ?
"\tfog = 1.0f - pow(2.0f, -8.0f * fog);\n", // exp
"\tfog = 1.0f - pow(2.0f, -8.0f * fog * fog);\n", // exp2
"\tfog = pow(2.0f, -8.0f * (1.0f - fog));\n", // backward exp
"\tfog = 1.0f - fog;\n fog = pow(2.0f, -8.0f * fog * fog);\n" // backward exp2
};
static void WriteFog(char *&p)
{
if (bpmem.fog.c_proj_fsel.fsel == 0)
return; // no Fog
if (bpmem.fog.c_proj_fsel.proj == 0)
{
// perspective
// ze = A/(B - (Zs >> B_SHF)
WRITE (p, "\tfloat ze = " I_FOG"[1].x / (" I_FOG"[1].y - (zCoord / " I_FOG"[1].w));\n");
}
else
{
// orthographic
// ze = a*Zs (here, no B_SHF)
WRITE (p, "\tfloat ze = " I_FOG"[1].x * zCoord;\n");
}
// x_adjust = sqrt((x-center)^2 + k^2)/k
// ze *= x_adjust
//this is completely theoretical as the real hardware seems to use a table instead of calculating the values.
if (bpmem.fogRange.Base.Enabled)
{
WRITE (p, "\tfloat x_adjust = (2.0f * (clipPos.x / " I_FOG"[2].y)) - 1.0f - " I_FOG"[2].x;\n");
WRITE (p, "\tx_adjust = sqrt(x_adjust * x_adjust + " I_FOG"[2].z * " I_FOG"[2].z) / " I_FOG"[2].z;\n");
WRITE (p, "\tze *= x_adjust;\n");
}
WRITE (p, "\tfloat fog = saturate(ze - " I_FOG"[1].z);\n");
if (bpmem.fog.c_proj_fsel.fsel > 3)
{
WRITE(p, "%s", tevFogFuncsTable[bpmem.fog.c_proj_fsel.fsel]);
}
else
{
if (bpmem.fog.c_proj_fsel.fsel != 2)
WARN_LOG(VIDEO, "Unknown Fog Type! %08x", bpmem.fog.c_proj_fsel.fsel);
}
WRITE(p, "\tprev.rgb = lerp(prev.rgb, " I_FOG"[0].rgb, fog);\n");
}