dolphin/Source/Core/InputCommon/ControllerInterface/Xlib/XInput2.cpp
Techjar 311d0442de InputCommon/XInput2: Increase mouse buttons to 32
Xlib supports many mouse buttons, though there are 9 standard buttons, and they aren't arranged like other mouse APIs. Using only 5 buttons was preventing the use of buttons besides left/right/middle click and the scroll wheel. Here's what all the standard buttons are:
1. left button
2. middle button (pressing the scroll wheel)
3. right button
4. turn scroll wheel up
5. turn scroll wheel down
6. push scroll wheel left
7. push scroll wheel right
8. 4th button (aka browser backward button)
9. 5th button (aka browser forward button)

The remaining button indices are non-standard and device-specific, and technically far more than 32 are supported, but this seems like a reasonable limit to avoid cluttering the list with tons of useless mouse buttons. What mouse has more than 32 buttons anyways?
2018-08-27 08:47:32 -04:00

373 lines
12 KiB
C++

// Copyright 2013 Max Eliaser
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wregister"
#include <X11/XKBlib.h>
#pragma GCC diagnostic pop
#include <cmath>
#include <cstdlib>
#include <cstring>
#include "InputCommon/ControllerInterface/Xlib/XInput2.h"
#include "Common/StringUtil.h"
// This is an input plugin using the XInput 2.0 extension to the X11 protocol,
// loosely based on the old XLib plugin. (Has nothing to do with the XInput
// API on Windows.)
// This plugin creates one KeyboardMouse object for each master pointer/
// keyboard pair. Each KeyboardMouse object exports four types of controls:
// * Mouse button controls: hardcoded at 32 of them, but could be made to
// support infinitely many mouse buttons in theory; XInput2 has no limit.
// * Mouse cursor controls: one for each cardinal direction. Calculated by
// comparing the absolute position of the mouse pointer on screen to the
// center of the emulator window.
// * Mouse axis controls: one for each cardinal direction. Calculated using
// a running average of relative mouse motion on each axis.
// * Key controls: these correspond to a limited subset of the keyboard
// keys.
// Mouse axis control tuning. Unlike absolute mouse position, relative mouse
// motion data needs to be tweaked and smoothed out a bit to be usable.
// Mouse axis control output is simply divided by this number. In practice,
// that just means you can use a smaller "dead zone" if you bind axis controls
// to a joystick. No real need to make this customizable.
#define MOUSE_AXIS_SENSITIVITY 8.0f
// The mouse axis controls use a weighted running average. Each frame, the new
// value is the average of the old value and the amount of relative mouse
// motion during that frame. The old value is weighted by a ratio of
// MOUSE_AXIS_SMOOTHING:1 compared to the new value. Increasing
// MOUSE_AXIS_SMOOTHING makes the controls smoother, decreasing it makes them
// more responsive. This might be useful as a user-customizable option.
#define MOUSE_AXIS_SMOOTHING 1.5f
namespace ciface
{
namespace XInput2
{
// This function will add zero or more KeyboardMouse objects to devices.
void PopulateDevices(void* const hwnd)
{
Display* dpy = XOpenDisplay(nullptr);
// xi_opcode is important; it will be used to identify XInput events by
// the polling loop in UpdateInput.
int xi_opcode, event, error;
// verify that the XInput extension is available
if (!XQueryExtension(dpy, "XInputExtension", &xi_opcode, &event, &error))
return;
// verify that the XInput extension is at at least version 2.0
int major = 2, minor = 0;
if (XIQueryVersion(dpy, &major, &minor) != Success)
return;
// register all master devices with Dolphin
XIDeviceInfo* all_masters;
XIDeviceInfo* current_master;
int num_masters;
all_masters = XIQueryDevice(dpy, XIAllMasterDevices, &num_masters);
for (int i = 0; i < num_masters; i++)
{
current_master = &all_masters[i];
if (current_master->use == XIMasterPointer)
{
// Since current_master is a master pointer, its attachment must
// be a master keyboard.
g_controller_interface.AddDevice(std::make_shared<KeyboardMouse>(
(Window)hwnd, xi_opcode, current_master->deviceid, current_master->attachment));
}
}
XCloseDisplay(dpy);
XIFreeDeviceInfo(all_masters);
}
// Apply the event mask to the device and all its slaves. Only used in the
// constructor. Remember, each KeyboardMouse has its own copy of the event
// stream, which is how multiple event masks can "coexist."
void KeyboardMouse::SelectEventsForDevice(Window window, XIEventMask* mask, int deviceid)
{
// Set the event mask for the master device.
mask->deviceid = deviceid;
XISelectEvents(m_display, window, mask, 1);
// Query all the master device's slaves and set the same event mask for
// those too. There are two reasons we want to do this. For mouse devices,
// we want the raw motion events, and only slaves (i.e. physical hardware
// devices) emit those. For keyboard devices, selecting slaves avoids
// dealing with key focus.
XIDeviceInfo* all_slaves;
XIDeviceInfo* current_slave;
int num_slaves;
all_slaves = XIQueryDevice(m_display, XIAllDevices, &num_slaves);
for (int i = 0; i < num_slaves; i++)
{
current_slave = &all_slaves[i];
if ((current_slave->use != XISlavePointer && current_slave->use != XISlaveKeyboard) ||
current_slave->attachment != deviceid)
continue;
mask->deviceid = current_slave->deviceid;
XISelectEvents(m_display, window, mask, 1);
}
XIFreeDeviceInfo(all_slaves);
}
KeyboardMouse::KeyboardMouse(Window window, int opcode, int pointer, int keyboard)
: m_window(window), xi_opcode(opcode), pointer_deviceid(pointer), keyboard_deviceid(keyboard)
{
memset(&m_state, 0, sizeof(m_state));
// The cool thing about each KeyboardMouse object having its own Display
// is that each one gets its own separate copy of the X11 event stream,
// which it can individually filter to get just the events it's interested
// in. So be aware that each KeyboardMouse object actually has its own X11
// "context."
m_display = XOpenDisplay(nullptr);
int min_keycode, max_keycode;
XDisplayKeycodes(m_display, &min_keycode, &max_keycode);
int unused; // should always be 1
XIDeviceInfo* pointer_device = XIQueryDevice(m_display, pointer_deviceid, &unused);
name = std::string(pointer_device->name);
XIFreeDeviceInfo(pointer_device);
XIEventMask mask;
unsigned char mask_buf[(XI_LASTEVENT + 7) / 8];
mask.mask_len = sizeof(mask_buf);
mask.mask = mask_buf;
memset(mask_buf, 0, sizeof(mask_buf));
XISetMask(mask_buf, XI_ButtonPress);
XISetMask(mask_buf, XI_ButtonRelease);
XISetMask(mask_buf, XI_RawMotion);
XISetMask(mask_buf, XI_KeyPress);
XISetMask(mask_buf, XI_KeyRelease);
SelectEventsForDevice(DefaultRootWindow(m_display), &mask, pointer_deviceid);
SelectEventsForDevice(DefaultRootWindow(m_display), &mask, keyboard_deviceid);
// Keyboard Keys
for (int i = min_keycode; i <= max_keycode; ++i)
{
Key* temp_key = new Key(m_display, i, m_state.keyboard);
if (temp_key->m_keyname.length())
AddInput(temp_key);
else
delete temp_key;
}
// Mouse Buttons
for (int i = 0; i < 32; i++)
AddInput(new Button(i, &m_state.buttons));
// Mouse Cursor, X-/+ and Y-/+
for (int i = 0; i != 4; ++i)
AddInput(new Cursor(!!(i & 2), !!(i & 1), (i & 2) ? &m_state.cursor.y : &m_state.cursor.x));
// Mouse Axis, X-/+ and Y-/+
for (int i = 0; i != 4; ++i)
AddInput(new Axis(!!(i & 2), !!(i & 1), (i & 2) ? &m_state.axis.y : &m_state.axis.x));
}
KeyboardMouse::~KeyboardMouse()
{
XCloseDisplay(m_display);
}
// Update the mouse cursor controls
void KeyboardMouse::UpdateCursor()
{
double root_x, root_y, win_x, win_y;
Window root, child;
// unused-- we're not interested in button presses here, as those are
// updated using events
XIButtonState button_state;
XIModifierState mods;
XIGroupState group;
XIQueryPointer(m_display, pointer_deviceid, m_window, &root, &child, &root_x, &root_y, &win_x,
&win_y, &button_state, &mods, &group);
free(button_state.mask);
XWindowAttributes win_attribs;
XGetWindowAttributes(m_display, m_window, &win_attribs);
// the mouse position as a range from -1 to 1
m_state.cursor.x = win_x / (float)win_attribs.width * 2 - 1;
m_state.cursor.y = win_y / (float)win_attribs.height * 2 - 1;
}
void KeyboardMouse::UpdateInput()
{
XFlush(m_display);
// for the axis controls
float delta_x = 0.0f, delta_y = 0.0f;
double delta_delta;
bool mouse_moved = false;
// Iterate through the event queue - update the axis controls, mouse
// button controls, and keyboard controls.
XEvent event;
while (XPending(m_display))
{
XNextEvent(m_display, &event);
if (event.xcookie.type != GenericEvent)
continue;
if (event.xcookie.extension != xi_opcode)
continue;
if (!XGetEventData(m_display, &event.xcookie))
continue;
// only one of these will get used
XIDeviceEvent* dev_event = (XIDeviceEvent*)event.xcookie.data;
XIRawEvent* raw_event = (XIRawEvent*)event.xcookie.data;
switch (event.xcookie.evtype)
{
case XI_ButtonPress:
m_state.buttons |= 1 << (dev_event->detail - 1);
break;
case XI_ButtonRelease:
m_state.buttons &= ~(1 << (dev_event->detail - 1));
break;
case XI_KeyPress:
m_state.keyboard[dev_event->detail / 8] |= 1 << (dev_event->detail % 8);
break;
case XI_KeyRelease:
m_state.keyboard[dev_event->detail / 8] &= ~(1 << (dev_event->detail % 8));
break;
case XI_RawMotion:
mouse_moved = true;
// always safe because there is always at least one byte in
// raw_event->valuators.mask, and if a bit is set in the mask,
// then the value in raw_values is also available.
if (XIMaskIsSet(raw_event->valuators.mask, 0))
{
delta_delta = raw_event->raw_values[0];
// test for inf and nan
if (delta_delta == delta_delta && 1 + delta_delta != delta_delta)
delta_x += delta_delta;
}
if (XIMaskIsSet(raw_event->valuators.mask, 1))
{
delta_delta = raw_event->raw_values[1];
// test for inf and nan
if (delta_delta == delta_delta && 1 + delta_delta != delta_delta)
delta_y += delta_delta;
}
break;
}
XFreeEventData(m_display, &event.xcookie);
}
// apply axis smoothing
m_state.axis.x *= MOUSE_AXIS_SMOOTHING;
m_state.axis.x += delta_x;
m_state.axis.x /= MOUSE_AXIS_SMOOTHING + 1.0f;
m_state.axis.y *= MOUSE_AXIS_SMOOTHING;
m_state.axis.y += delta_y;
m_state.axis.y /= MOUSE_AXIS_SMOOTHING + 1.0f;
// Get the absolute position of the mouse pointer
if (mouse_moved)
UpdateCursor();
}
std::string KeyboardMouse::GetName() const
{
// This is the name string we got from the X server for this master
// pointer/keyboard pair.
return name;
}
std::string KeyboardMouse::GetSource() const
{
return "XInput2";
}
KeyboardMouse::Key::Key(Display* const display, KeyCode keycode, const char* keyboard)
: m_display(display), m_keyboard(keyboard), m_keycode(keycode)
{
int i = 0;
KeySym keysym = 0;
do
{
keysym = XkbKeycodeToKeysym(m_display, keycode, i, 0);
i++;
} while (keysym == NoSymbol && i < 8);
// Convert to upper case for the keyname
if (keysym >= 97 && keysym <= 122)
keysym -= 32;
// 0x0110ffff is the top of the unicode character range according
// to keysymdef.h although it is probably more than we need.
if (keysym == NoSymbol || keysym > 0x0110ffff || XKeysymToString(keysym) == nullptr)
m_keyname = std::string();
else
m_keyname = std::string(XKeysymToString(keysym));
}
ControlState KeyboardMouse::Key::GetState() const
{
return (m_keyboard[m_keycode / 8] & (1 << (m_keycode % 8))) != 0;
}
KeyboardMouse::Button::Button(unsigned int index, unsigned int* buttons)
: m_buttons(buttons), m_index(index)
{
name = StringFromFormat("Click %d", m_index + 1);
}
ControlState KeyboardMouse::Button::GetState() const
{
return ((*m_buttons & (1 << m_index)) != 0);
}
KeyboardMouse::Cursor::Cursor(u8 index, bool positive, const float* cursor)
: m_cursor(cursor), m_index(index), m_positive(positive)
{
name = std::string("Cursor ") + (char)('X' + m_index) + (m_positive ? '+' : '-');
}
ControlState KeyboardMouse::Cursor::GetState() const
{
return std::max(0.0f, *m_cursor / (m_positive ? 1.0f : -1.0f));
}
KeyboardMouse::Axis::Axis(u8 index, bool positive, const float* axis)
: m_axis(axis), m_index(index), m_positive(positive)
{
name = std::string("Axis ") + (char)('X' + m_index) + (m_positive ? '+' : '-');
}
ControlState KeyboardMouse::Axis::GetState() const
{
return std::max(0.0f, *m_axis / (m_positive ? MOUSE_AXIS_SENSITIVITY : -MOUSE_AXIS_SENSITIVITY));
}
}
}