dolphin/Source/Core/VideoCommon/PostProcessing.cpp
Filoppi a2702c6e27 Video: implement color correction to match the NTSC and PAL color spaces (and gamma) that GC and Wii targeted.
To further increase the accuracy of the post process phase, I've added (scRGB) HDR support, which is necessary
to fully display the PAL and NTSC-J color spaces, and also to improve the quality of post process texture samplings and
do them in linear space instead of gamma space (which is very important when playing at low resolutions).
For SDR, the quality is also slightly increased, at least if any post process runs, as the buffer is now
R10G10B10A2 (on Vulkan, DX11 and DX12) if supported; previously it was R8G8B8A8 but the alpha bits were wasted.

Gamma correction is arguably the most important thing as Dolphin on Windows outputted in "sRGB" (implicitly)
as that's what Windows expects by default, though sRGB gamma is very different from the gamma commonly used
by video standards dating to the pre HDR era (roughly gamma 2.35).

Additionally, the addition of HDR support (which is pretty straight forward and minimal), added support for
our own custom AutoHDR shaders, which would allow us to achieve decent looking HDR in Dolphin games without
having to use SpecialK or Windows 11 AutoHDR. Both of which don't necessarily play nice with older games
with strongly different and simpler lighting. HDR should also be supported in Linux.
Development of my own AutoHDR shader is almost complete and will come next.

This has been carefully tested and there should be no regression in any of the different features that Dolphin
offers, like multisampling, stereo rendering, other post processes, etc etc.

Fixes: https://bugs.dolphin-emu.org/issues/8941

Co-authored-by: EndlesslyFlowering <EndlesslyFlowering@protonmail.com>
Co-authored-by: Dogway <lin_ares@hotmail.com>
2023-06-19 01:34:42 +03:00

1033 lines
34 KiB
C++

// Copyright 2014 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/PostProcessing.h"
#include <sstream>
#include <string>
#include <string_view>
#include <fmt/format.h>
#include "Common/Assert.h"
#include "Common/CommonPaths.h"
#include "Common/CommonTypes.h"
#include "Common/FileSearch.h"
#include "Common/FileUtil.h"
#include "Common/IniFile.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/StringUtil.h"
#include "VideoCommon/AbstractFramebuffer.h"
#include "VideoCommon/AbstractGfx.h"
#include "VideoCommon/AbstractPipeline.h"
#include "VideoCommon/AbstractShader.h"
#include "VideoCommon/AbstractTexture.h"
#include "VideoCommon/FramebufferManager.h"
#include "VideoCommon/Present.h"
#include "VideoCommon/ShaderCache.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
namespace VideoCommon
{
static const char s_empty_pixel_shader[] = "void main() { SetOutput(Sample()); }\n";
static const char s_default_pixel_shader_name[] = "default_pre_post_process";
// Keep the highest quality possible to avoid losing quality on subtle gamma conversions.
// RGBA16F should have enough quality even if we store colors in gamma space on it.
static const AbstractTextureFormat s_intermediary_buffer_format = AbstractTextureFormat::RGBA16F;
bool LoadShaderFromFile(const std::string& shader, const std::string& sub_dir,
std::string& out_code)
{
std::string path = File::GetUserPath(D_SHADERS_IDX) + sub_dir + shader + ".glsl";
if (!File::Exists(path))
{
// Fallback to shared user dir
path = File::GetSysDirectory() + SHADERS_DIR DIR_SEP + sub_dir + shader + ".glsl";
}
if (!File::ReadFileToString(path, out_code))
{
out_code = "";
ERROR_LOG_FMT(VIDEO, "Post-processing shader not found: {}", path);
return false;
}
return true;
}
PostProcessingConfiguration::PostProcessingConfiguration() = default;
PostProcessingConfiguration::~PostProcessingConfiguration() = default;
void PostProcessingConfiguration::LoadShader(const std::string& shader)
{
// Load the shader from the configuration if there isn't one sent to us.
m_current_shader = shader;
if (shader.empty())
{
LoadDefaultShader();
return;
}
std::string sub_dir = "";
if (g_Config.stereo_mode == StereoMode::Anaglyph)
{
sub_dir = ANAGLYPH_DIR DIR_SEP;
}
else if (g_Config.stereo_mode == StereoMode::Passive)
{
sub_dir = PASSIVE_DIR DIR_SEP;
}
std::string code;
if (!LoadShaderFromFile(shader, sub_dir, code))
{
LoadDefaultShader();
return;
}
LoadOptions(code);
// Note that this will build the shaders with the custom options values users
// might have set in the settings
LoadOptionsConfiguration();
m_current_shader_code = code;
}
void PostProcessingConfiguration::LoadDefaultShader()
{
m_options.clear();
m_any_options_dirty = false;
m_current_shader = "";
m_current_shader_code = s_empty_pixel_shader;
}
void PostProcessingConfiguration::LoadOptions(const std::string& code)
{
const std::string config_start_delimiter = "[configuration]";
const std::string config_end_delimiter = "[/configuration]";
size_t configuration_start = code.find(config_start_delimiter);
size_t configuration_end = code.find(config_end_delimiter);
m_options.clear();
m_any_options_dirty = true;
if (configuration_start == std::string::npos || configuration_end == std::string::npos)
{
// Issue loading configuration or there isn't one.
return;
}
std::string configuration_string =
code.substr(configuration_start + config_start_delimiter.size(),
configuration_end - configuration_start - config_start_delimiter.size());
std::istringstream in(configuration_string);
struct GLSLStringOption
{
std::string m_type;
std::vector<std::pair<std::string, std::string>> m_options;
};
std::vector<GLSLStringOption> option_strings;
GLSLStringOption* current_strings = nullptr;
while (!in.eof())
{
std::string line_str;
if (std::getline(in, line_str))
{
std::string_view line = line_str;
#ifndef _WIN32
// Check for CRLF eol and convert it to LF
if (!line.empty() && line.at(line.size() - 1) == '\r')
line.remove_suffix(1);
#endif
if (!line.empty())
{
if (line[0] == '[')
{
size_t endpos = line.find("]");
if (endpos != std::string::npos)
{
// New section!
std::string_view sub = line.substr(1, endpos - 1);
option_strings.push_back({std::string(sub)});
current_strings = &option_strings.back();
}
}
else
{
if (current_strings)
{
std::string key, value;
Common::IniFile::ParseLine(line, &key, &value);
if (!(key.empty() && value.empty()))
current_strings->m_options.emplace_back(key, value);
}
}
}
}
}
for (const auto& it : option_strings)
{
ConfigurationOption option;
option.m_dirty = true;
if (it.m_type == "OptionBool")
option.m_type = ConfigurationOption::OptionType::Bool;
else if (it.m_type == "OptionRangeFloat")
option.m_type = ConfigurationOption::OptionType::Float;
else if (it.m_type == "OptionRangeInteger")
option.m_type = ConfigurationOption::OptionType::Integer;
for (const auto& string_option : it.m_options)
{
if (string_option.first == "GUIName")
{
option.m_gui_name = string_option.second;
}
else if (string_option.first == "OptionName")
{
option.m_option_name = string_option.second;
}
else if (string_option.first == "DependentOption")
{
option.m_dependent_option = string_option.second;
}
else if (string_option.first == "MinValue" || string_option.first == "MaxValue" ||
string_option.first == "DefaultValue" || string_option.first == "StepAmount")
{
std::vector<s32>* output_integer = nullptr;
std::vector<float>* output_float = nullptr;
if (string_option.first == "MinValue")
{
output_integer = &option.m_integer_min_values;
output_float = &option.m_float_min_values;
}
else if (string_option.first == "MaxValue")
{
output_integer = &option.m_integer_max_values;
output_float = &option.m_float_max_values;
}
else if (string_option.first == "DefaultValue")
{
output_integer = &option.m_integer_values;
output_float = &option.m_float_values;
}
else if (string_option.first == "StepAmount")
{
output_integer = &option.m_integer_step_values;
output_float = &option.m_float_step_values;
}
if (option.m_type == ConfigurationOption::OptionType::Bool)
{
TryParse(string_option.second, &option.m_bool_value);
}
else if (option.m_type == ConfigurationOption::OptionType::Integer)
{
TryParseVector(string_option.second, output_integer);
if (output_integer->size() > 4)
output_integer->erase(output_integer->begin() + 4, output_integer->end());
}
else if (option.m_type == ConfigurationOption::OptionType::Float)
{
TryParseVector(string_option.second, output_float);
if (output_float->size() > 4)
output_float->erase(output_float->begin() + 4, output_float->end());
}
}
}
m_options[option.m_option_name] = option;
}
}
void PostProcessingConfiguration::LoadOptionsConfiguration()
{
Common::IniFile ini;
ini.Load(File::GetUserPath(F_DOLPHINCONFIG_IDX));
std::string section = m_current_shader + "-options";
// We already expect all the options to be marked as "dirty" when we reach here
for (auto& it : m_options)
{
switch (it.second.m_type)
{
case ConfigurationOption::OptionType::Bool:
ini.GetOrCreateSection(section)->Get(it.second.m_option_name, &it.second.m_bool_value,
it.second.m_bool_value);
break;
case ConfigurationOption::OptionType::Integer:
{
std::string value;
ini.GetOrCreateSection(section)->Get(it.second.m_option_name, &value);
if (!value.empty())
{
auto integer_values = it.second.m_integer_values;
if (TryParseVector(value, &integer_values))
{
it.second.m_integer_values = integer_values;
}
}
}
break;
case ConfigurationOption::OptionType::Float:
{
std::string value;
ini.GetOrCreateSection(section)->Get(it.second.m_option_name, &value);
if (!value.empty())
{
auto float_values = it.second.m_float_values;
if (TryParseVector(value, &float_values))
{
it.second.m_float_values = float_values;
}
}
}
break;
}
}
}
void PostProcessingConfiguration::SaveOptionsConfiguration()
{
Common::IniFile ini;
ini.Load(File::GetUserPath(F_DOLPHINCONFIG_IDX));
std::string section = m_current_shader + "-options";
for (auto& it : m_options)
{
switch (it.second.m_type)
{
case ConfigurationOption::OptionType::Bool:
{
ini.GetOrCreateSection(section)->Set(it.second.m_option_name, it.second.m_bool_value);
}
break;
case ConfigurationOption::OptionType::Integer:
{
std::string value;
for (size_t i = 0; i < it.second.m_integer_values.size(); ++i)
{
value += fmt::format("{}{}", it.second.m_integer_values[i],
i == (it.second.m_integer_values.size() - 1) ? "" : ", ");
}
ini.GetOrCreateSection(section)->Set(it.second.m_option_name, value);
}
break;
case ConfigurationOption::OptionType::Float:
{
std::ostringstream value;
value.imbue(std::locale("C"));
for (size_t i = 0; i < it.second.m_float_values.size(); ++i)
{
value << it.second.m_float_values[i];
if (i != (it.second.m_float_values.size() - 1))
value << ", ";
}
ini.GetOrCreateSection(section)->Set(it.second.m_option_name, value.str());
}
break;
}
}
ini.Save(File::GetUserPath(F_DOLPHINCONFIG_IDX));
}
void PostProcessingConfiguration::SetOptionf(const std::string& option, int index, float value)
{
auto it = m_options.find(option);
it->second.m_float_values[index] = value;
it->second.m_dirty = true;
m_any_options_dirty = true;
}
void PostProcessingConfiguration::SetOptioni(const std::string& option, int index, s32 value)
{
auto it = m_options.find(option);
it->second.m_integer_values[index] = value;
it->second.m_dirty = true;
m_any_options_dirty = true;
}
void PostProcessingConfiguration::SetOptionb(const std::string& option, bool value)
{
auto it = m_options.find(option);
it->second.m_bool_value = value;
it->second.m_dirty = true;
m_any_options_dirty = true;
}
PostProcessing::PostProcessing()
{
m_timer.Start();
}
PostProcessing::~PostProcessing()
{
m_timer.Stop();
}
static std::vector<std::string> GetShaders(const std::string& sub_dir = "")
{
std::vector<std::string> paths =
Common::DoFileSearch({File::GetUserPath(D_SHADERS_IDX) + sub_dir,
File::GetSysDirectory() + SHADERS_DIR DIR_SEP + sub_dir},
{".glsl"});
std::vector<std::string> result;
for (std::string path : paths)
{
std::string name;
SplitPath(path, nullptr, &name, nullptr);
if (name == s_default_pixel_shader_name)
continue;
result.push_back(name);
}
return result;
}
std::vector<std::string> PostProcessing::GetShaderList()
{
return GetShaders();
}
std::vector<std::string> PostProcessing::GetAnaglyphShaderList()
{
return GetShaders(ANAGLYPH_DIR DIR_SEP);
}
std::vector<std::string> PostProcessing::GetPassiveShaderList()
{
return GetShaders(PASSIVE_DIR DIR_SEP);
}
bool PostProcessing::Initialize(AbstractTextureFormat format)
{
m_framebuffer_format = format;
// CompilePixelShader must be run first if configuration options are used.
// Otherwise the UBO has a different member list between vertex and pixel
// shaders, which is a link error.
if (!CompilePixelShader() || !CompileVertexShader() || !CompilePipeline())
return false;
return true;
}
void PostProcessing::RecompileShader()
{
// Note: for simplicity we already recompile all the shaders
// and pipelines even if there might not be need to.
m_default_pipeline.reset();
m_pipeline.reset();
m_default_pixel_shader.reset();
m_pixel_shader.reset();
m_default_vertex_shader.reset();
m_vertex_shader.reset();
if (!CompilePixelShader())
return;
if (!CompileVertexShader())
return;
CompilePipeline();
}
void PostProcessing::RecompilePipeline()
{
m_default_pipeline.reset();
m_pipeline.reset();
CompilePipeline();
}
bool PostProcessing::IsColorCorrectionActive() const
{
// We can skip the color correction pass if none of these settings are on
// (it might have still helped with gamma correct sampling, but it's not worth running it).
return g_ActiveConfig.color_correction.bCorrectColorSpace ||
g_ActiveConfig.color_correction.bCorrectGamma ||
m_framebuffer_format == AbstractTextureFormat::RGBA16F;
}
bool PostProcessing::NeedsIntermediaryBuffer() const
{
// If we have no user selected post process shader,
// there's no point in having an intermediary buffer doing nothing.
return !m_config.GetShader().empty();
}
void PostProcessing::BlitFromTexture(const MathUtil::Rectangle<int>& dst,
const MathUtil::Rectangle<int>& src,
const AbstractTexture* src_tex, int src_layer)
{
if (g_gfx->GetCurrentFramebuffer()->GetColorFormat() != m_framebuffer_format)
{
m_framebuffer_format = g_gfx->GetCurrentFramebuffer()->GetColorFormat();
RecompilePipeline();
}
// By default all source layers will be copied into the respective target layers
const bool copy_all_layers = src_layer < 0;
src_layer = std::max(src_layer, 0);
MathUtil::Rectangle<int> src_rect = src;
g_gfx->SetSamplerState(0, RenderState::GetLinearSamplerState());
g_gfx->SetTexture(0, src_tex);
const bool is_color_correction_active = IsColorCorrectionActive();
const bool needs_intermediary_buffer = NeedsIntermediaryBuffer();
const AbstractPipeline* final_pipeline = m_pipeline.get();
std::vector<u8>* uniform_staging_buffer = &m_default_uniform_staging_buffer;
bool default_uniform_staging_buffer = true;
// Intermediary pass.
// We draw to a high quality intermediary texture for two reasons:
// -Keep quality for gamma and gamut conversions, and HDR output
// (low bit depths lose too much quality with gamma conversions)
// -We make a texture of the exact same res as the source one,
// because all the post process shaders we already had assume that
// the source texture size (EFB) is different from the swap chain
// texture size (which matches the window size).
if (m_default_pipeline && is_color_correction_active && needs_intermediary_buffer)
{
AbstractFramebuffer* const previous_framebuffer = g_gfx->GetCurrentFramebuffer();
// We keep the min number of layers as the render target,
// as in case of OpenGL, the source FBX will have two layers,
// but we will render onto two separate frame buffers (one by one),
// so it would be a waste to allocate two layers (see "bUsesExplictQuadBuffering").
const u32 target_layers = copy_all_layers ? src_tex->GetLayers() : 1;
if (!m_intermediary_frame_buffer || !m_intermediary_color_texture ||
m_intermediary_color_texture.get()->GetWidth() != static_cast<u32>(src_rect.GetWidth()) ||
m_intermediary_color_texture.get()->GetHeight() != static_cast<u32>(src_rect.GetHeight()) ||
m_intermediary_color_texture.get()->GetLayers() != target_layers)
{
const TextureConfig intermediary_color_texture_config(
src_rect.GetWidth(), src_rect.GetHeight(), 1, target_layers, src_tex->GetSamples(),
s_intermediary_buffer_format, AbstractTextureFlag_RenderTarget);
m_intermediary_color_texture = g_gfx->CreateTexture(intermediary_color_texture_config,
"Intermediary post process texture");
m_intermediary_frame_buffer =
g_gfx->CreateFramebuffer(m_intermediary_color_texture.get(), nullptr);
}
g_gfx->SetFramebuffer(m_intermediary_frame_buffer.get());
FillUniformBuffer(src_rect, src_tex, src_layer, g_gfx->GetCurrentFramebuffer()->GetRect(),
g_presenter->GetTargetRectangle(), uniform_staging_buffer->data(),
!default_uniform_staging_buffer);
g_vertex_manager->UploadUtilityUniforms(uniform_staging_buffer->data(),
static_cast<u32>(uniform_staging_buffer->size()));
g_gfx->SetViewportAndScissor(g_gfx->ConvertFramebufferRectangle(
m_intermediary_color_texture->GetRect(), m_intermediary_frame_buffer.get()));
g_gfx->SetPipeline(m_default_pipeline.get());
g_gfx->Draw(0, 3);
g_gfx->SetFramebuffer(previous_framebuffer);
src_rect = m_intermediary_color_texture->GetRect();
src_tex = m_intermediary_color_texture.get();
g_gfx->SetTexture(0, src_tex);
// The "m_intermediary_color_texture" has already copied
// from the specified source layer onto its first one.
// If we query for a layer that the source texture doesn't have,
// it will fall back on the first one anyway.
src_layer = 0;
uniform_staging_buffer = &m_uniform_staging_buffer;
default_uniform_staging_buffer = false;
}
else
{
// If we have no custom user shader selected, and color correction
// is active, directly run the fixed pipeline shader instead of
// doing two passes, with the second one doing nothing useful.
if (m_default_pipeline && is_color_correction_active)
{
final_pipeline = m_default_pipeline.get();
}
else
{
uniform_staging_buffer = &m_uniform_staging_buffer;
default_uniform_staging_buffer = false;
}
m_intermediary_frame_buffer.release();
m_intermediary_color_texture.release();
}
// TODO: ideally we'd do the user selected post process pass in the intermediary buffer in linear
// space (instead of gamma space), so the shaders could act more accurately (and sample in linear
// space), though that would break the look of some of current post processes we have, and thus is
// better avoided for now.
// Final pass, either a user selected shader or the default (fixed) shader.
if (final_pipeline)
{
FillUniformBuffer(src_rect, src_tex, src_layer, g_gfx->GetCurrentFramebuffer()->GetRect(),
g_presenter->GetTargetRectangle(), uniform_staging_buffer->data(),
!default_uniform_staging_buffer);
g_vertex_manager->UploadUtilityUniforms(uniform_staging_buffer->data(),
static_cast<u32>(uniform_staging_buffer->size()));
g_gfx->SetViewportAndScissor(
g_gfx->ConvertFramebufferRectangle(dst, g_gfx->GetCurrentFramebuffer()));
g_gfx->SetPipeline(final_pipeline);
g_gfx->Draw(0, 3);
}
}
std::string PostProcessing::GetUniformBufferHeader(bool user_post_process) const
{
std::ostringstream ss;
u32 unused_counter = 1;
ss << "UBO_BINDING(std140, 1) uniform PSBlock {\n";
// Builtin uniforms:
ss << " float4 resolution;\n"; // Source resolution
ss << " float4 target_resolution;\n";
ss << " float4 window_resolution;\n";
// How many horizontal and vertical stereo views do we have? (set to 1 when we use layers instead)
ss << " int2 stereo_views;\n";
ss << " float4 src_rect;\n";
// The first (but not necessarily only) source layer we target
ss << " int src_layer;\n";
ss << " uint time;\n";
ss << " int correct_color_space;\n";
ss << " int game_color_space;\n";
ss << " int correct_gamma;\n";
ss << " float game_gamma;\n";
ss << " int sdr_display_gamma_sRGB;\n";
ss << " float sdr_display_custom_gamma;\n";
ss << " int linear_space_output;\n";
ss << " int hdr_output;\n";
ss << " float hdr_paper_white_nits;\n";
ss << " float hdr_sdr_white_nits;\n";
if (user_post_process)
{
ss << "\n";
// Custom options/uniforms
for (const auto& it : m_config.GetOptions())
{
if (it.second.m_type == PostProcessingConfiguration::ConfigurationOption::OptionType::Bool)
{
ss << fmt::format(" int {};\n", it.first);
for (u32 i = 0; i < 3; i++)
ss << " int ubo_align_" << unused_counter++ << "_;\n";
}
else if (it.second.m_type ==
PostProcessingConfiguration::ConfigurationOption::OptionType::Integer)
{
u32 count = static_cast<u32>(it.second.m_integer_values.size());
if (count == 1)
ss << fmt::format(" int {};\n", it.first);
else
ss << fmt::format(" int{} {};\n", count, it.first);
for (u32 i = count; i < 4; i++)
ss << " int ubo_align_" << unused_counter++ << "_;\n";
}
else if (it.second.m_type ==
PostProcessingConfiguration::ConfigurationOption::OptionType::Float)
{
u32 count = static_cast<u32>(it.second.m_float_values.size());
if (count == 1)
ss << fmt::format(" float {};\n", it.first);
else
ss << fmt::format(" float{} {};\n", count, it.first);
for (u32 i = count; i < 4; i++)
ss << " float ubo_align_" << unused_counter++ << "_;\n";
}
}
}
ss << "};\n\n";
return ss.str();
}
std::string PostProcessing::GetHeader(bool user_post_process) const
{
std::ostringstream ss;
ss << GetUniformBufferHeader(user_post_process);
ss << "SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n";
ss << "SAMPLER_BINDING(1) uniform sampler2DArray samp1;\n";
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders)
{
ss << "VARYING_LOCATION(0) in VertexData {\n";
ss << " float3 v_tex0;\n";
ss << "};\n";
}
else
{
ss << "VARYING_LOCATION(0) in float3 v_tex0;\n";
}
ss << "FRAGMENT_OUTPUT_LOCATION(0) out float4 ocol0;\n";
ss << R"(
float4 Sample() { return texture(samp0, v_tex0); }
float4 SampleLocation(float2 location) { return texture(samp0, float3(location, float(v_tex0.z))); }
float4 SampleLayer(int layer) { return texture(samp0, float3(v_tex0.xy, float(layer))); }
#define SampleOffset(offset) textureOffset(samp0, v_tex0, offset)
float2 GetTargetResolution()
{
return target_resolution.xy;
}
float2 GetInvTargetResolution()
{
return target_resolution.zw;
}
float2 GetWindowResolution()
{
return window_resolution.xy;
}
float2 GetInvWindowResolution()
{
return window_resolution.zw;
}
float2 GetResolution()
{
return resolution.xy;
}
float2 GetInvResolution()
{
return resolution.zw;
}
float2 GetCoordinates()
{
return v_tex0.xy;
}
float GetLayer()
{
return v_tex0.z;
}
uint GetTime()
{
return time;
}
void SetOutput(float4 color)
{
ocol0 = color;
}
#define GetOption(x) (x)
#define OptionEnabled(x) ((x) != 0)
)";
return ss.str();
}
std::string PostProcessing::GetFooter() const
{
return {};
}
bool PostProcessing::CompileVertexShader()
{
std::ostringstream ss;
// We never need the user selected post process custom uniforms in the vertex shader
const bool user_post_process = false;
ss << GetUniformBufferHeader(user_post_process);
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders)
{
ss << "VARYING_LOCATION(0) out VertexData {\n";
ss << " float3 v_tex0;\n";
ss << "};\n";
}
else
{
ss << "VARYING_LOCATION(0) out float3 v_tex0;\n";
}
ss << "#define id gl_VertexID\n";
ss << "#define opos gl_Position\n";
ss << "void main() {\n";
ss << " v_tex0 = float3(float((id << 1) & 2), float(id & 2), 0.0f);\n";
ss << " opos = float4(v_tex0.xy * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), 0.0f, 1.0f);\n";
ss << " v_tex0 = float3(src_rect.xy + (src_rect.zw * v_tex0.xy), float(src_layer));\n";
// Vulkan Y needs to be inverted on every pass
if (g_ActiveConfig.backend_info.api_type == APIType::Vulkan)
ss << " opos.y = -opos.y;\n";
std::string s2 = ss.str();
s2 += "}\n";
m_default_vertex_shader = g_gfx->CreateShaderFromSource(ShaderStage::Vertex, s2,
"Default post-processing vertex shader");
// OpenGL Y needs to be inverted once only (in the last pass)
if (g_ActiveConfig.backend_info.api_type == APIType::OpenGL)
ss << " opos.y = -opos.y;\n";
ss << "}\n";
m_vertex_shader =
g_gfx->CreateShaderFromSource(ShaderStage::Vertex, ss.str(), "Post-processing vertex shader");
if (!m_default_vertex_shader || !m_vertex_shader)
{
PanicAlertFmt("Failed to compile post-processing vertex shader");
m_default_vertex_shader.reset();
m_vertex_shader.reset();
return false;
}
return true;
}
struct BuiltinUniforms
{
// bools need to be represented as "s32"
std::array<float, 4> source_resolution;
std::array<float, 4> target_resolution;
std::array<float, 4> window_resolution;
std::array<float, 4> stereo_views;
std::array<float, 4> src_rect;
s32 src_layer;
u32 time;
s32 correct_color_space;
s32 game_color_space;
s32 correct_gamma;
float game_gamma;
s32 sdr_display_gamma_sRGB;
float sdr_display_custom_gamma;
s32 linear_space_output;
s32 hdr_output;
float hdr_paper_white_nits;
float hdr_sdr_white_nits;
};
size_t PostProcessing::CalculateUniformsSize(bool user_post_process) const
{
// Allocate a vec4 for each uniform to simplify allocation.
return sizeof(BuiltinUniforms) +
(user_post_process ? m_config.GetOptions().size() : 0) * sizeof(float) * 4;
}
void PostProcessing::FillUniformBuffer(const MathUtil::Rectangle<int>& src,
const AbstractTexture* src_tex, int src_layer,
const MathUtil::Rectangle<int>& dst,
const MathUtil::Rectangle<int>& wnd, u8* buffer,
bool user_post_process)
{
const float rcp_src_width = 1.0f / src_tex->GetWidth();
const float rcp_src_height = 1.0f / src_tex->GetHeight();
BuiltinUniforms builtin_uniforms;
builtin_uniforms.source_resolution = {static_cast<float>(src_tex->GetWidth()),
static_cast<float>(src_tex->GetHeight()), rcp_src_width,
rcp_src_height};
builtin_uniforms.target_resolution = {
static_cast<float>(dst.GetWidth()), static_cast<float>(dst.GetHeight()),
1.0f / static_cast<float>(dst.GetWidth()), 1.0f / static_cast<float>(dst.GetHeight())};
builtin_uniforms.window_resolution = {
static_cast<float>(wnd.GetWidth()), static_cast<float>(wnd.GetHeight()),
1.0f / static_cast<float>(wnd.GetWidth()), 1.0f / static_cast<float>(wnd.GetHeight())};
builtin_uniforms.src_rect = {static_cast<float>(src.left) * rcp_src_width,
static_cast<float>(src.top) * rcp_src_height,
static_cast<float>(src.GetWidth()) * rcp_src_width,
static_cast<float>(src.GetHeight()) * rcp_src_height};
builtin_uniforms.src_layer = static_cast<s32>(src_layer);
builtin_uniforms.time = static_cast<u32>(m_timer.ElapsedMs());
// Color correction related uniforms.
// These are mainly used by the "m_default_pixel_shader",
// but should also be accessible to all other shaders.
builtin_uniforms.correct_color_space = g_ActiveConfig.color_correction.bCorrectColorSpace;
builtin_uniforms.game_color_space =
static_cast<int>(g_ActiveConfig.color_correction.game_color_space);
builtin_uniforms.correct_gamma = g_ActiveConfig.color_correction.bCorrectGamma;
builtin_uniforms.game_gamma = g_ActiveConfig.color_correction.fGameGamma;
builtin_uniforms.sdr_display_gamma_sRGB = g_ActiveConfig.color_correction.bSDRDisplayGammaSRGB;
builtin_uniforms.sdr_display_custom_gamma =
g_ActiveConfig.color_correction.fSDRDisplayCustomGamma;
// scRGB (RGBA16F) expects linear values as opposed to sRGB gamma
builtin_uniforms.linear_space_output = m_framebuffer_format == AbstractTextureFormat::RGBA16F;
// Implies ouput values can be beyond the 0-1 range
builtin_uniforms.hdr_output = m_framebuffer_format == AbstractTextureFormat::RGBA16F;
builtin_uniforms.hdr_paper_white_nits = g_ActiveConfig.color_correction.fHDRPaperWhiteNits;
// A value of 1 1 1 usually matches 80 nits in HDR
builtin_uniforms.hdr_sdr_white_nits = 80.f;
std::memcpy(buffer, &builtin_uniforms, sizeof(builtin_uniforms));
buffer += sizeof(builtin_uniforms);
if (!user_post_process)
return;
for (auto& it : m_config.GetOptions())
{
union
{
u32 as_bool[4];
s32 as_int[4];
float as_float[4];
} value = {};
switch (it.second.m_type)
{
case PostProcessingConfiguration::ConfigurationOption::OptionType::Bool:
value.as_bool[0] = it.second.m_bool_value ? 1 : 0;
break;
case PostProcessingConfiguration::ConfigurationOption::OptionType::Integer:
ASSERT(it.second.m_integer_values.size() <= 4);
std::copy_n(it.second.m_integer_values.begin(), it.second.m_integer_values.size(),
value.as_int);
break;
case PostProcessingConfiguration::ConfigurationOption::OptionType::Float:
ASSERT(it.second.m_float_values.size() <= 4);
std::copy_n(it.second.m_float_values.begin(), it.second.m_float_values.size(),
value.as_float);
break;
}
it.second.m_dirty = false;
std::memcpy(buffer, &value, sizeof(value));
buffer += sizeof(value);
}
m_config.SetDirty(false);
}
bool PostProcessing::CompilePixelShader()
{
m_default_pixel_shader.reset();
m_pixel_shader.reset();
// Generate GLSL and compile the new shaders:
std::string default_pixel_shader_code;
if (LoadShaderFromFile(s_default_pixel_shader_name, "", default_pixel_shader_code))
{
m_default_pixel_shader = g_gfx->CreateShaderFromSource(
ShaderStage::Pixel, GetHeader(false) + default_pixel_shader_code + GetFooter(),
"Default post-processing pixel shader");
// We continue even if all of this failed, it doesn't matter
m_default_uniform_staging_buffer.resize(CalculateUniformsSize(false));
}
else
{
m_default_uniform_staging_buffer.resize(0);
}
m_config.LoadShader(g_ActiveConfig.sPostProcessingShader);
m_pixel_shader = g_gfx->CreateShaderFromSource(
ShaderStage::Pixel, GetHeader(true) + m_config.GetShaderCode() + GetFooter(),
fmt::format("User post-processing pixel shader: {}", m_config.GetShader()));
if (!m_pixel_shader)
{
PanicAlertFmt("Failed to compile user post-processing shader {}", m_config.GetShader());
// Use default shader.
m_config.LoadDefaultShader();
m_pixel_shader = g_gfx->CreateShaderFromSource(
ShaderStage::Pixel, GetHeader(true) + m_config.GetShaderCode() + GetFooter(),
"Default user post-processing pixel shader");
if (!m_pixel_shader)
{
m_uniform_staging_buffer.resize(0);
return false;
}
}
m_uniform_staging_buffer.resize(CalculateUniformsSize(true));
return true;
}
bool UseGeometryShaderForPostProcess(bool is_intermediary_buffer)
{
// We only return true on stereo modes that need to copy
// both source texture layers into the target texture layers.
// Any other case is handled manually with multiple copies, thus
// it doesn't need a geom shader.
switch (g_ActiveConfig.stereo_mode)
{
case StereoMode::QuadBuffer:
return !g_ActiveConfig.backend_info.bUsesExplictQuadBuffering;
case StereoMode::Anaglyph:
case StereoMode::Passive:
return is_intermediary_buffer;
case StereoMode::SBS:
case StereoMode::TAB:
case StereoMode::Off:
default:
return false;
}
}
bool PostProcessing::CompilePipeline()
{
// Not needed. Some backends don't like making pipelines with no targets,
// and in any case, we don't need to render anything if that happened.
if (m_framebuffer_format == AbstractTextureFormat::Undefined)
return true;
// If this is true, the "m_default_pipeline" won't be the only one that runs
const bool needs_intermediary_buffer = NeedsIntermediaryBuffer();
AbstractPipelineConfig config = {};
config.vertex_shader =
needs_intermediary_buffer ? m_vertex_shader.get() : m_default_vertex_shader.get();
// This geometry shader will take care of reading both layer 0 and 1 on the source texture,
// and writing to both layer 0 and 1 on the render target.
config.geometry_shader = UseGeometryShaderForPostProcess(needs_intermediary_buffer) ?
g_shader_cache->GetTexcoordGeometryShader() :
nullptr;
config.pixel_shader = m_default_pixel_shader.get();
config.rasterization_state = RenderState::GetNoCullRasterizationState(PrimitiveType::Triangles);
config.depth_state = RenderState::GetNoDepthTestingDepthState();
config.blending_state = RenderState::GetNoBlendingBlendState();
config.framebuffer_state = RenderState::GetColorFramebufferState(
needs_intermediary_buffer ? s_intermediary_buffer_format : m_framebuffer_format);
config.usage = AbstractPipelineUsage::Utility;
// We continue even if it failed, it will be skipped later on
if (config.pixel_shader)
m_default_pipeline = g_gfx->CreatePipeline(config);
config.vertex_shader = m_default_vertex_shader.get();
config.geometry_shader = UseGeometryShaderForPostProcess(false) ?
g_shader_cache->GetTexcoordGeometryShader() :
nullptr;
config.pixel_shader = m_pixel_shader.get();
config.framebuffer_state = RenderState::GetColorFramebufferState(m_framebuffer_format);
m_pipeline = g_gfx->CreatePipeline(config);
if (!m_pipeline)
return false;
return true;
}
} // namespace VideoCommon