dolphin/Source/Core/DSPCore/Src/DSPInterpreter.cpp

1826 lines
47 KiB
C++

// Copyright (C) 2003-2009 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
// Additional copyrights go to Duddie and Tratax (c) 2004
#include "DSPInterpreter.h"
#include "Common.h"
#include "gdsp_memory.h"
#include "gdsp_interpreter.h"
#include "gdsp_condition_codes.h"
#include "gdsp_registers.h"
#include "gdsp_opcodes_helper.h"
#include "gdsp_ext_op.h"
namespace DSPInterpreter {
void unknown(const UDSPInstruction& opc)
{
//_assert_msg_(MASTER_LOG, !g_dsp.exception_in_progress_hack, "assert while exception");
ERROR_LOG(DSPLLE, "LLE: Unrecognized opcode 0x%04x, pc 0x%04x", opc.hex, g_dsp.pc);
}
// test register and updates SR accordingly
void tsta(int reg)
{
s64 acc = dsp_get_long_acc(reg);
Update_SR_Register64(acc);
}
// Generic call implementation
// CALLcc addressA
// 0000 0010 1011 cccc
// aaaa aaaa aaaa aaaa
// Call function if condition cc has been met. Push program counter of
// instruction following "call" to $st0. Set program counter to address
// represented by value that follows this "call" instruction.
void call(const UDSPInstruction& opc)
{
u16 dest = dsp_fetch_code();
if (CheckCondition(opc.hex & 0xf))
{
dsp_reg_store_stack(DSP_STACK_C, g_dsp.pc);
g_dsp.pc = dest;
}
}
// Generic callr implementation
// CALLRcc $R
// 0001 0111 rrr1 cccc
// Call functionif condition cc has been met.Push program counter of
// instruction following "call" tocall stack $st0. Set program counter to
// register $R.
void callr(const UDSPInstruction& opc)
{
u16 addr;
u8 reg;
if (CheckCondition(opc.hex & 0xf))
{
reg = (opc.hex >> 5) & 0x7;
addr = dsp_op_read_reg(reg);
dsp_reg_store_stack(DSP_STACK_C, g_dsp.pc);
g_dsp.pc = addr;
}
}
// Generic if implementation
// IFcc
// 0000 0010 0111 cccc
// Execute following opcode if the condition has been met.
void ifcc(const UDSPInstruction& opc)
{
if (!CheckCondition(opc.hex & 0xf))
{
// skip the next opcode - we have to lookup its size.
g_dsp.pc += opSize[dsp_peek_code()];
}
}
// Generic jmp implementation
// Jcc addressA
// 0000 0010 1001 cccc
// aaaa aaaa aaaa aaaa
// Jump to addressA if condition cc has been met. Set program counter to
// address represented by value that follows this "jmp" instruction.
void jcc(const UDSPInstruction& opc)
{
u16 dest = dsp_fetch_code();
if (CheckCondition(opc.hex & 0xf))
{
g_dsp.pc = dest;
}
}
// Generic jmpr implementation
// JMPcc $R
// 0001 0111 rrr0 cccc
// Jump to address; set program counter to a value from register $R.
void jmprcc(const UDSPInstruction& opc)
{
if (CheckCondition(opc.hex & 0xf))
{
u8 reg = (opc.hex >> 5) & 0x7;
g_dsp.pc = dsp_op_read_reg(reg);
}
}
// Generic ret implementation
// RETcc
// 0000 0010 1101 cccc
// Return from subroutine if condition cc has been met. Pops stored PC
// from call stack $st0 and sets $pc to this location.
void ret(const UDSPInstruction& opc)
{
if (CheckCondition(opc.hex & 0xf))
{
g_dsp.pc = dsp_reg_load_stack(DSP_STACK_C);
}
}
// RTI
// 0000 0010 1111 1111
// Return from exception. Pops stored status register $sr from data stack
// $st1 and program counter PC from call stack $st0 and sets $pc to this
// location.
// FIXME: is it also conditional? unknown opcodes 0x02fx
void rti(const UDSPInstruction& opc)
{
g_dsp.r[DSP_REG_SR] = dsp_reg_load_stack(DSP_STACK_D);
g_dsp.pc = dsp_reg_load_stack(DSP_STACK_C);
g_dsp.exception_in_progress_hack = false;
}
// HALT
// 0000 0000 0020 0001
// Stops execution of DSP code. Sets bit DSP_CR_HALT in register DREG_CR.
void halt(const UDSPInstruction& opc)
{
g_dsp.cr |= 0x4;
g_dsp.pc--;
}
// LOOP handling: Loop stack is used to control execution of repeated blocks of
// instructions. Whenever there is value on stack $st2 and current PC is equal
// value at $st2, then value at stack $st3 is decremented. If value is not zero
// then PC is modified with calue from call stack $st0. Otherwise values from
// callstack $st0 and both loop stacks $st2 and $st3 are poped and execution
// continues at next opcode.
// LOOP $R
// 0000 0000 010r rrrr
// Repeatedly execute following opcode until counter specified by value
// from register $R reaches zero. Each execution decrement counter. Register
// $R remains unchanged. If register $R is set to zero at the beginning of loop
// then looped instruction will not get executed.
void loop(const UDSPInstruction& opc)
{
u16 reg = opc.hex & 0x1f;
u16 cnt = g_dsp.r[reg];
u16 loop_pc = g_dsp.pc;
if (cnt)
{
dsp_reg_store_stack(0, g_dsp.pc);
dsp_reg_store_stack(2, loop_pc);
dsp_reg_store_stack(3, cnt);
}
}
// LOOPI #I
// 0001 0000 iiii iiii
// Repeatedly execute following opcode until counter specified by
// immediate value I reaches zero. Each execution decrement counter. If
// immediate value I is set to zero at the beginning of loop then looped
// instruction will not get executed.
void loopi(const UDSPInstruction& opc)
{
u16 cnt = opc.hex & 0xff;
u16 loop_pc = g_dsp.pc;
if (cnt)
{
dsp_reg_store_stack(0, g_dsp.pc);
dsp_reg_store_stack(2, loop_pc);
dsp_reg_store_stack(3, cnt);
}
}
// BLOOP $R, addrA
// 0000 0000 011r rrrr
// aaaa aaaa aaaa aaaa
// Repeatedly execute block of code starting at following opcode until
// counter specified by value from register $R reaches zero. Block ends at
// specified address addrA inclusive, ie. opcode at addrA is the last opcode
// included in loop. Counter is pushed on loop stack $st3, end of block address
// is pushed on loop stack $st2 and repeat address is pushed on call stack $st0.
// Up to 4 nested loops is allowed.
void bloop(const UDSPInstruction& opc)
{
u16 reg = opc.hex & 0x1f;
u16 cnt = g_dsp.r[reg];
u16 loop_pc = dsp_fetch_code();
if (cnt)
{
dsp_reg_store_stack(0, g_dsp.pc);
dsp_reg_store_stack(2, loop_pc);
dsp_reg_store_stack(3, cnt);
}
else
{
g_dsp.pc = loop_pc;
g_dsp.pc += opSize[dsp_peek_code()];
}
}
// BLOOPI #I, addrA
// 0001 0001 iiii iiii
// aaaa aaaa aaaa aaaa
// Repeatedly execute block of code starting at following opcode until
// counter specified by immediate value I reaches zero. Block ends at specified
// address addrA inclusive, ie. opcode at addrA is the last opcode included in
// loop. Counter is pushed on loop stack $st3, end of block address is pushed
// on loop stack $st2 and repeat address is pushed on call stack $st0. Up to 4
// nested loops is allowed.
void bloopi(const UDSPInstruction& opc)
{
u16 cnt = opc.hex & 0xff;
u16 loop_pc = dsp_fetch_code();
if (cnt)
{
dsp_reg_store_stack(0, g_dsp.pc);
dsp_reg_store_stack(2, loop_pc);
dsp_reg_store_stack(3, cnt);
}
else
{
g_dsp.pc = loop_pc;
g_dsp.pc += opSize[dsp_peek_code()];
}
}
//-------------------------------------------------------------
// MRR $D, $S
// 0001 11dd ddds ssss
// Move value from register $S to register $D.
// FIXME: Perform additional operation depending on destination register.
void mrr(const UDSPInstruction& opc)
{
u8 sreg = opc.hex & 0x1f;
u8 dreg = (opc.hex >> 5) & 0x1f;
u16 val = dsp_op_read_reg(sreg);
dsp_op_write_reg(dreg, val);
}
// LRR $D, @$S
// 0001 1000 0ssd dddd
// Move value from data memory pointed by addressing register $S toregister $D.
// FIXME: Perform additional operation depending on destination register.
void lrr(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 5) & 0x3;
u8 dreg = opc.hex & 0x1f;
u16 val = dsp_dmem_read(g_dsp.r[sreg]);
dsp_op_write_reg(dreg, val);
}
// LRRD $D, @$S
// 0001 1000 1ssd dddd
// Move value from data memory pointed by addressing register $S toregister $D.
// Decrement register $S.
// FIXME: Perform additional operation depending on destination register.
void lrrd(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 5) & 0x3;
u8 dreg = opc.hex & 0x1f;
u16 val = dsp_dmem_read(g_dsp.r[sreg]);
dsp_op_write_reg(dreg, val);
g_dsp.r[sreg]--;
}
// LRRI $D, @$S
// 0001 1001 0ssd dddd
// Move value from data memory pointed by addressing register $S to register $D.
// Increment register $S.
// FIXME: Perform additional operation depending on destination register.
void lrri(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 5) & 0x3;
u8 dreg = opc.hex & 0x1f;
u16 val = dsp_dmem_read(g_dsp.r[sreg]);
dsp_op_write_reg(dreg, val);
g_dsp.r[sreg]++;
}
// LRRN $D, @$S
// 0001 1001 1ssd dddd
// Move value from data memory pointed by addressing register $S to register $D.
// Add indexing register $(0x4+S) to register $S.
// FIXME: Perform additional operation depending on destination register.
void lrrn(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 5) & 0x3;
u8 dreg = opc.hex & 0x1f;
u16 val = dsp_dmem_read(g_dsp.r[sreg]);
dsp_op_write_reg(dreg, val);
g_dsp.r[sreg] += g_dsp.r[sreg + 4];
}
// SRR @$D, $S
// 0001 1010 0dds ssss
// Store value from source register $S to a memory location pointed by
// addressing register $D.
// FIXME: Perform additional operation depending on source register.
void srr(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 5) & 0x3;
u8 sreg = opc.hex & 0x1f;
u16 val = dsp_op_read_reg(sreg);
dsp_dmem_write(g_dsp.r[dreg], val);
}
// SRRD @$D, $S
// 0001 1010 1dds ssss
// Store value from source register $S to a memory location pointed by
// addressing register $D. Decrement register $D.
// FIXME: Perform additional operation depending on source register.
void srrd(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 5) & 0x3;
u8 sreg = opc.hex & 0x1f;
u16 val = dsp_op_read_reg(sreg);
dsp_dmem_write(g_dsp.r[dreg], val);
g_dsp.r[dreg]--;
}
// SRRI @$D, $S
// 0001 1011 0dds ssss
// Store value from source register $S to a memory location pointed by
// addressing register $D. Increment register $D.
// FIXME: Perform additional operation depending on source register.
void srri(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 5) & 0x3;
u8 sreg = opc.hex & 0x1f;
u16 val = dsp_op_read_reg(sreg);
dsp_dmem_write(g_dsp.r[dreg], val);
g_dsp.r[dreg]++;
}
// SRRN @$D, $S
// 0001 1011 1dds ssss
// Store value from source register $S to a memory location pointed by
// addressing register $D. Add DSP_REG_IX0 register to register $D.
// FIXME: Perform additional operation depending on source register.
void srrn(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 5) & 0x3;
u8 sreg = opc.hex & 0x1f;
u16 val = dsp_op_read_reg(sreg);
dsp_dmem_write(g_dsp.r[dreg], val);
g_dsp.r[dreg] += g_dsp.r[DSP_REG_IX0 + dreg];
}
// ILRR $acD.m, @$arS
// 0000 001d 0001 00ss
// Move value from instruction memory pointed by addressing register
// $arS to mid accumulator register $acD.m.
void ilrr(const UDSPInstruction& opc)
{
u16 reg = opc.hex & 0x3;
u16 dreg = DSP_REG_ACM0 + ((opc.hex >> 8) & 1);
g_dsp.r[dreg] = dsp_imem_read(g_dsp.r[reg]);
}
// ILRRD $acD.m, @$arS
// 0000 001d 0001 01ss
// Move value from instruction memory pointed by addressing register
// $arS to mid accumulator register $acD.m. Decrement addressing register $arS.
void ilrrd(const UDSPInstruction& opc)
{
u16 reg = opc.hex & 0x3;
u16 dreg = DSP_REG_ACM0 + ((opc.hex >> 8) & 1);
g_dsp.r[dreg] = dsp_imem_read(g_dsp.r[reg]);
g_dsp.r[reg]--;
}
// ILRRI $acD.m, @$S
// 0000 001d 0001 10ss
// Move value from instruction memory pointed by addressing register
// $arS to mid accumulator register $acD.m. Increment addressing register $arS.
void ilrri(const UDSPInstruction& opc)
{
u16 reg = opc.hex & 0x3;
u16 dreg = DSP_REG_ACM0 + ((opc.hex >> 8) & 1);
g_dsp.r[dreg] = dsp_imem_read(g_dsp.r[reg]);
g_dsp.r[reg]++;
}
// ILRRN $acD.m, @$arS
// 0000 001d 0001 11ss
// Move value from instruction memory pointed by addressing register
// $arS to mid accumulator register $acD.m. Add corresponding indexing
// register $ixS to addressing register $arS.
void ilrrn(const UDSPInstruction& opc)
{
u16 reg = opc.hex & 0x3;
u16 dreg = DSP_REG_ACM0 + ((opc.hex >> 8) & 1);
g_dsp.r[dreg] = dsp_imem_read(g_dsp.r[reg]);
g_dsp.r[reg] += g_dsp.r[DSP_REG_IX0 + reg];
}
// LRI $D, #I
// 0000 0000 100d dddd
// iiii iiii iiii iiii
// Load immediate value I to register $D.
// FIXME: Perform additional operation depending on destination register.
void lri(const UDSPInstruction& opc)
{
u8 reg = opc.hex & DSP_REG_MASK;
u16 imm = dsp_fetch_code();
dsp_op_write_reg(reg, imm);
}
// LRIS $(0x18+D), #I
// 0000 1ddd iiii iiii
// Load immediate value I (8-bit sign extended) to accumulator register.
// FIXME: Perform additional operation depending on destination register.
void lris(const UDSPInstruction& opc)
{
u8 reg = ((opc.hex >> 8) & 0x7) + DSP_REG_AXL0;
u16 imm = (s8)opc.hex;
dsp_op_write_reg(reg, imm);
}
// LR $D, @M
// 0000 0000 110d dddd
// mmmm mmmm mmmm mmmm
// Move value from data memory pointed by address M to register $D.
// FIXME: Perform additional operation depending on destination register.
void lr(const UDSPInstruction& opc)
{
u8 reg = opc.hex & DSP_REG_MASK;
u16 addr = dsp_fetch_code();
u16 val = dsp_dmem_read(addr);
dsp_op_write_reg(reg, val);
}
// SR @M, $S
// 0000 0000 111s ssss
// mmmm mmmm mmmm mmmm
// Store value from register $S to a memory pointed by address M.
// FIXME: Perform additional operation depending on destination register.
void sr(const UDSPInstruction& opc)
{
u8 reg = opc.hex & DSP_REG_MASK;
u16 addr = dsp_fetch_code();
u16 val = dsp_op_read_reg(reg);
dsp_dmem_write(addr, val);
}
// SI @M, #I
// 0001 0110 mmmm mmmm
// iiii iiii iiii iiii
// Store 16-bit immediate value I to a memory location pointed by address
// M (M is 8-bit value sign extended).
void si(const UDSPInstruction& opc)
{
u16 addr = (s8)opc.hex;
u16 imm = dsp_fetch_code();
dsp_dmem_write(addr, imm);
}
// TSTAXH $axR.h
// 1000 011r xxxx xxxx
// Test hight part of secondary accumulator $axR.h.
void tstaxh(const UDSPInstruction& opc)
{
u8 reg = (opc.hex >> 8) & 0x1;
s16 val = dsp_get_ax_h(reg);
Update_SR_Register16(val);
}
// TSTAXL $axR.h
// 1000 011r xxxx xxxx
// Test lower part of secondary accumulator $axR.h.
void tstaxl(const UDSPInstruction& opc)
{
u8 reg = (opc.hex >> 8) & 0x1;
s16 val = dsp_get_ax_l(reg);
Update_SR_Register16(val);
}
// CLR $acR
// 1000 r001 xxxx xxxx
// Clears accumulator $acR
void clr(const UDSPInstruction& opc)
{
u8 reg = (opc.hex >> 11) & 0x1;
dsp_set_long_acc(reg, 0);
Update_SR_Register64((s64)0); // really?
}
// CLRL $acR.l
// 1111 110r xxxx xxxx
// Clears $acR.l - low 16 bits of accumulator $acR.
void clrl(const UDSPInstruction& opc)
{
u16 reg = DSP_REG_ACL0 + ((opc.hex >> 11) & 0x1);
g_dsp.r[reg] = 0;
// Should this be 64bit?
// nakee: it says the whole reg in duddie's doc sounds weird
Update_SR_Register64((s64)reg);
}
// CLRP
// 1000 0100 xxxx xxxx
// Clears product register $prod.
void clrp(const UDSPInstruction& opc)
{
// Magic numbers taken from duddie's doc
g_dsp.r[0x14] = 0x0000;
g_dsp.r[0x15] = 0xfff0;
g_dsp.r[0x16] = 0x00ff;
g_dsp.r[0x17] = 0x0010;
}
// MULC $acS.m, $axT.h
// 110s t000 xxxx xxxx
// Multiply mid part of accumulator register $acS.m by high part $axS.h of
// secondary accumulator $axS (treat them both as signed).
void mulc(const UDSPInstruction& opc)
{
// math new prod
u8 sreg = (opc.hex >> 11) & 0x1;
u8 treg = (opc.hex >> 12) & 0x1;
s64 prod = dsp_get_acc_m(sreg) * dsp_get_ax_h(treg) * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// MULCMVZ $acS.m, $axT.h, $acR
// 110s t01r xxxx xxxx
// (fixed possible bug in duddie's description, s->t)
// Multiply mid part of accumulator register $acS.m by high part $axT.h of
// secondary accumulator $axT (treat them both as signed). Move product
// register before multiplication to accumulator $acR, set low part of
// accumulator $acR.l to zero.
void mulcmvz(const UDSPInstruction& opc)
{
s64 TempProd = dsp_get_long_prod();
// update prod
u8 sreg = (opc.hex >> 12) & 0x1;
u8 treg = (opc.hex >> 11) & 0x1;
s64 Prod = (s64)dsp_get_acc_m(sreg) * (s64)dsp_get_ax_h(treg) * GetMultiplyModifier();
dsp_set_long_prod(Prod);
// update acc
u8 rreg = (opc.hex >> 8) & 0x1;
s64 acc = TempProd & ~0xffff; // clear lower 4 bytes
dsp_set_long_acc(rreg, acc);
Update_SR_Register64(acc);
}
// MULCMV $acS.m, $axT.h, $acR
// 110s t11r xxxx xxxx
// Multiply mid part of accumulator register $acS.m by high part $axT.h of
// secondary accumulator $axT (treat them both as signed). Move product
// register before multiplication to accumulator $acR.
// possible mistake in duddie's doc axT.h rather than axS.h
void mulcmv(const UDSPInstruction& opc)
{
s64 tempProd = dsp_get_long_prod();
// update prod
u8 sreg = (opc.hex >> 12) & 0x1;
u8 treg = (opc.hex >> 11) & 0x1;
s64 prod = (s64)dsp_get_acc_m(sreg) * (s64)dsp_get_ax_h(treg) * GetMultiplyModifier();
dsp_set_long_prod(prod);
// update acc
u8 rreg = (opc.hex >> 8) & 0x1;
dsp_set_long_acc(rreg, tempProd);
Update_SR_Register64(tempProd);
}
// CMPAR $acS axR.h
// 1100 0001 xxxx xxxx
// Compares accumulator $acS with accumulator axR.h.
// Not described by Duddie's doc - at least not as a separate instruction.
void cmpar(const UDSPInstruction& opc)
{
u8 rreg = ((opc.hex >> 12) & 0x1) + DSP_REG_AXH0;
u8 sreg = (opc.hex >> 11) & 0x1;
// we compare
s64 rr = (s16)g_dsp.r[rreg];
rr <<= 16;
s64 sr = dsp_get_long_acc(sreg);
Update_SR_Register64(sr - rr);
}
// CMP
// 1000 0010 xxxx xxxx
// Compares accumulator $ac0 with accumulator $ac1.
void cmp(const UDSPInstruction& opc)
{
s64 acc0 = dsp_get_long_acc(0);
s64 acc1 = dsp_get_long_acc(1);
Update_SR_Register64(acc0 - acc1);
}
// TST
// 1011 r001 xxxx xxxx
// Test accumulator %acR.
void tst(const UDSPInstruction& opc)
{
tsta((opc.hex >> 11) & 0x1);
}
// ADDAXL $acD, $axS.l
// 0111 00sd xxxx xxxx
// Adds secondary accumulator $axS.l to accumulator register $acD.
void addaxl(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(dreg);
s64 acx = dsp_get_ax_l(sreg);
acc += acx;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// ADDARN $arD, $ixS
// 0000 0000 0001 ssdd
// Adds indexing register $ixS to an addressing register $arD.
void addarn(const UDSPInstruction& opc)
{
u8 dreg = opc.hex & 0x3;
u8 sreg = (opc.hex >> 2) & 0x3;
g_dsp.r[dreg] += (s16)g_dsp.r[DSP_REG_IX0 + sreg];
}
// MULCAC $acS.m, $axT.h, $acR
// 110s t10r xxxx xxxx
// Multiply mid part of accumulator register $acS.m by high part $axS.h of
// secondary accumulator $axS (treat them both as signed). Add product
// register before multiplication to accumulator $acR.
void mulcac(const UDSPInstruction& opc)
{
s64 TempProd = dsp_get_long_prod();
// update prod
u8 sreg = (opc.hex >> 12) & 0x1;
u8 treg = (opc.hex >> 11) & 0x1;
s64 Prod = (s64)dsp_get_acc_m(sreg) * (s64)dsp_get_ax_h(treg) * GetMultiplyModifier();
dsp_set_long_prod(Prod);
// update acc
u8 rreg = (opc.hex >> 8) & 0x1;
s64 acc = TempProd + dsp_get_long_acc(rreg);
dsp_set_long_acc(rreg, acc);
Update_SR_Register64(acc);
}
// MOVR $acD, $axS.R
// 0110 0srd xxxx xxxx
// Moves register $axS.R (sign extended) to middle accumulator $acD.hm.
// Sets $acD.l to 0.
void movr(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u8 sreg = ((opc.hex >> 9) & 0x3) + DSP_REG_AXL0;
s64 acc = (s16)g_dsp.r[sreg];
acc <<= 16;
acc &= ~0xffff;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// MOVAX $acD, $axS
// 0110 10sd xxxx xxxx
// Moves secondary accumulator $axS to accumulator $axD.
void movax(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
u8 sreg = (opc.hex >> 9) & 0x1;
s64 acx = dsp_get_long_acx(sreg);
dsp_set_long_acc(dreg, acx);
Update_SR_Register64(acx);
}
// XORR $acD.m, $axS.h
// 0011 00sd xxxx xxxx
// Logic XOR (exclusive or) middle part of accumulator $acD.m with
// high part of secondary accumulator $axS.h.
void xorr(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
g_dsp.r[0x1e + dreg] ^= g_dsp.r[0x1a + sreg];
tsta(dreg);
}
// ANDR $acD.m, $axS.h
// 0011 01sd xxxx xxxx
// Logic AND middle part of accumulator $acD.m with high part of
// secondary accumulator $axS.h.
void andr(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
g_dsp.r[0x1e + dreg] &= g_dsp.r[0x1a + sreg];
tsta(dreg);
}
// ORR $acD.m, $axS.h
// 0011 10sd xxxx xxxx
// Logic OR middle part of accumulator $acD.m with high part of
// secondary accumulator $axS.h.
void orr(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
g_dsp.r[0x1e + dreg] |= g_dsp.r[0x1a + sreg];
tsta(dreg);
}
// ANDC $acD.m, $ac(1-D).m
// 0011 110d xxxx xxxx
// Logic AND middle part of accumulator $acD.m with middle part of
// accumulator $ax(1-D).m.s
void andc(const UDSPInstruction& opc)
{
u8 D = (opc.hex >> 8) & 0x1;
u16 ac1 = dsp_get_acc_m(D);
u16 ac2 = dsp_get_acc_m(1 - D);
dsp_set_long_acc(D, ac1 & ac2);
if ((ac1 & ac2) == 0)
{
g_dsp.r[DSP_REG_SR] |= 0x20; // 0x40?
}
else
{
g_dsp.r[DSP_REG_SR] &= ~0x20; // 0x40?
}
Update_SR_Register64(dsp_get_long_acc(D));
}
void orc(const UDSPInstruction& opc)
{
ERROR_LOG(DSPLLE, "orc not implemented");
}
void orf(const UDSPInstruction& opc)
{
ERROR_LOG(DSPLLE, "orf not implemented");
}
//-------------------------------------------------------------
void nx(const UDSPInstruction& opc)
{
// This opcode is supposed to do nothing - it's used if you want to use
// an opcode extension but not do anything. At least according to duddie.
}
// Hermes switched andf and andcf, so check to make sure they are still correct
// ANDCF $acD.m, #I
// 0000 001r 1100 0000
// iiii iiii iiii iiii
// Set logic zero (LZ) flag in status register $sr if result of logic AND of
// accumulator mid part $acD.m with immediate value I is equal zero.
void andfc(const UDSPInstruction& opc)
{
u8 reg = (opc.hex >> 8) & 0x1;
u16 imm = dsp_fetch_code();
u16 val = dsp_get_acc_m(reg);
if ((val & imm) == imm)
{
g_dsp.r[DSP_REG_SR] |= 0x40;
}
else
{
g_dsp.r[DSP_REG_SR] &= ~0x40;
}
}
// Hermes switched andf and andcf, so check to make sure they are still correct
// ANDF $acD.m, #I
// 0000 001r 1010 0000
// iiii iiii iiii iiii
// Set logic zero (LZ) flag in status register $sr if result of logical AND
// operation of accumulator mid part $acD.m with immediate value I is equal
// immediate value I.
void andf(const UDSPInstruction& opc)
{
u8 reg;
u16 imm;
u16 val;
reg = 0x1e + ((opc.hex >> 8) & 0x1);
imm = dsp_fetch_code();
val = g_dsp.r[reg];
if ((val & imm) == 0)
{
g_dsp.r[DSP_REG_SR] |= 0x40;
}
else
{
g_dsp.r[DSP_REG_SR] &= ~0x40;
}
}
// CMPI $amD, #I
// 0000 001r 1000 0000
// iiii iiii iiii iiii
// Compares mid accumulator $acD.hm ($amD) with sign extended immediate value I.
// Although flags are being set regarding whole accumulator register.
void cmpi(const UDSPInstruction& opc)
{
int reg = (opc.hex >> 8) & 0x1;
// Immediate is considered to be at M level in the 40-bit accumulator.
s64 imm = (s64)(s16)dsp_fetch_code() << 16;
s64 val = dsp_get_long_acc(reg);
s64 res = val - imm;
Update_SR_Register64(res);
}
// XORI $acD.m, #I
// 0000 001r 0010 0000
// iiii iiii iiii iiii
// Logic exclusive or (XOR) of accumulator mid part $acD.m with
// immediate value I.
void xori(const UDSPInstruction& opc)
{
u8 reg = DSP_REG_ACM0 + ((opc.hex >> 8) & 0x1);
u16 imm = dsp_fetch_code();
g_dsp.r[reg] ^= imm;
Update_SR_Register16((s16)g_dsp.r[reg]);
}
// ANDI $acD.m, #I
// 0000 001r 0100 0000
// iiii iiii iiii iiii
// Logic AND of accumulator mid part $acD.m with immediate value I.
void andi(const UDSPInstruction& opc)
{
u8 reg = DSP_REG_ACM0 + ((opc.hex >> 8) & 0x1);
u16 imm = dsp_fetch_code();
g_dsp.r[reg] &= imm;
Update_SR_Register16((s16)g_dsp.r[reg]);
}
// F|RES: i am not sure if this shouldnt be the whole ACC
// ORI $acD.m, #I
// 0000 001r 0110 0000
// iiii iiii iiii iiii
// Logic OR of accumulator mid part $acD.m with immediate value I.
void ori(const UDSPInstruction& opc)
{
u8 reg = 0x1e + ((opc.hex >> 8) & 0x1);
u16 imm = dsp_fetch_code();
g_dsp.r[reg] |= imm;
Update_SR_Register16((s16)g_dsp.r[reg]);
}
//-------------------------------------------------------------
// ADD $acD, $ac(1-D)
// 0100 110d xxxx xxxx
// Adds accumulator $ac(1-D) to accumulator register $acD.
void add(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc0 = dsp_get_long_acc(0);
s64 acc1 = dsp_get_long_acc(1);
s64 res = acc0 + acc1;
dsp_set_long_acc(areg, res);
Update_SR_Register64(res);
}
//-------------------------------------------------------------
// ADDP $acD
// 0100 111d xxxx xxxx
// Adds product register to accumulator register.
void addp(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(dreg);
acc += dsp_get_long_prod();
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// SUBP $acD
// 0101 111d xxxx xxxx
// Subtracts product register from accumulator register.
void subp(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(dreg);
acc -= dsp_get_long_prod();
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// CMPIS $acD, #I
// 0000 011d iiii iiii
// Compares accumulator with short immediate. Comaprison is executed
// by subtracting short immediate (8bit sign extended) from mid accumulator
// $acD.hm and computing flags based on whole accumulator $acD.
void cmpis(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(areg);
s64 val = (s8)opc.hex;
val <<= 16;
s64 res = acc - val;
Update_SR_Register64(res);
}
// ADDPAXZ $acD, $axS
// 1111 10sd xxxx xxxx
// Adds secondary accumulator $axS to product register and stores result
// in accumulator register. Low 16-bits of $acD ($acD.l) are set to 0.
void addpaxz(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
u8 sreg = (opc.hex >> 9) & 0x1;
s64 prod = dsp_get_long_prod() & ~0x0ffff;
s64 ax_h = dsp_get_long_acx(sreg);
s64 acc = (prod + ax_h) & ~0x0ffff;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// MOVPZ $acD
// 1111 111d xxxx xxxx
// Moves multiply product from $prod register to accumulator $acD
// register and sets $acD.l to 0
void movpz(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x01;
// overwrite acc and clear low part
s64 prod = dsp_get_long_prod();
s64 acc = prod & ~0xffff;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// DECM $acsD
// 0111 100d xxxx xxxx
// Decrement 24-bit mid-accumulator $acsD.
void decm(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x01;
s64 sub = 0x10000;
s64 acc = dsp_get_long_acc(dreg);
acc -= sub;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// DEC $acD
// 0111 101d xxxx xxxx
// Decrement accumulator $acD.
void dec(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x01;
s64 acc = dsp_get_long_acc(dreg) - 1;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// INCM $acsD
// 0111 010d xxxx xxxx
// Increment 24-bit mid-accumulator $acsD.
void incm(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 sub = 0x10000;
s64 acc = dsp_get_long_acc(dreg);
acc += sub;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// INC $acD
// 0111 011d xxxx xxxx
// Increment accumulator $acD.
void inc(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(dreg) + 1;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// NEG $acD
// 0111 110d xxxx xxxx
// Negate accumulator $acD.
void neg(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(areg);
acc = 0 - acc;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// MOVNP $acD
// 0111 111d xxxx xxxx
// Moves negative of multiply product from $prod register to accumulator
// $acD register.
void movnp(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 prod = dsp_get_long_prod();
s64 acc = -prod;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// MOV $acD, $ac(1-D)
// 0110 110d xxxx xxxx
// Moves accumulator $ax(1-D) to accumulator $axD.
void mov(const UDSPInstruction& opc)
{
u8 D = (opc.hex >> 8) & 0x1;
u64 acc = dsp_get_long_acc(1 - D);
dsp_set_long_acc(D, acc);
Update_SR_Register64(acc);
}
// ADDAX $acD, $axS
// 0100 10sd xxxx xxxx
// Adds secondary accumulator $axS to accumulator register $acD.
void addax(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u8 sreg = (opc.hex >> 9) & 0x1;
s64 ax = dsp_get_long_acx(sreg);
s64 acc = dsp_get_long_acc(areg);
acc += ax;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// ADDR $acD, $(DSP_REG_AXL0+S)
// 0100 0ssd xxxx xxxx
// Adds register $(DSP_REG_AXL0+S) to accumulator $acD register.
void addr(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u8 sreg = ((opc.hex >> 9) & 0x3) + DSP_REG_AXL0;
s64 ax = (s16)g_dsp.r[sreg];
ax <<= 16;
s64 acc = dsp_get_long_acc(areg);
acc += ax;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// SUBR $acD, $(DSP_REG_AXL0+S)
// 0101 0ssd xxxx xxxx
// Subtracts register $(DSP_REG_AXL0+S) from accumulator $acD register.
void subr(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u8 sreg = ((opc.hex >> 9) & 0x3) + DSP_REG_AXL0;
s64 ax = (s16)g_dsp.r[sreg];
ax <<= 16;
s64 acc = dsp_get_long_acc(areg);
acc -= ax;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// SUBAX $acD, $axS
// 0101 10sd xxxx xxxx
// Subtracts secondary accumulator $axS from accumulator register $acD.
void subax(const UDSPInstruction& opc)
{
int regD = (opc.hex >> 8) & 0x1;
int regS = (opc.hex >> 9) & 0x1;
s64 acc = dsp_get_long_acc(regD) - dsp_get_long_acx(regS);
dsp_set_long_acc(regD, acc);
Update_SR_Register64(acc);
}
// ADDIS $acD, #I
// 0000 010d iiii iiii
// Adds short immediate (8-bit sign extended) to mid accumulator $acD.hm.
void addis(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 Imm = (s8)opc.hex;
Imm <<= 16;
s64 acc = dsp_get_long_acc(areg);
acc += Imm;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// ADDI $amR, #I
// 0000 001r 0000 0000
// iiii iiii iiii iiii
// Adds immediate (16-bit sign extended) to mid accumulator $acD.hm.
void addi(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 sub = (s16)dsp_fetch_code();
sub <<= 16;
s64 acc = dsp_get_long_acc(areg);
acc += sub;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// LSL16 $acR
// 1111 000r xxxx xxxx
// Logically shifts left accumulator $acR by 16.
void lsl16(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(areg);
acc <<= 16;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// MADD $axS.l, $axS.h
// 1111 001s xxxx xxxx
// Multiply low part $axS.l of secondary accumulator $axS by high part
// $axS.h of secondary accumulator $axS (treat them both as signed) and add
// result to product register.
void madd(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 8) & 0x1;
s64 prod = dsp_get_long_prod();
prod += (s64)dsp_get_ax_l(sreg) * (s64)dsp_get_ax_h(sreg) * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// MSUB $axS.l, $axS.h
// 1111 011s xxxx xxxx
// Multiply low part $axS.l of secondary accumulator $axS by high part
// $axS.h of secondary accumulator $axS (treat them both as signed) and
// subtract result from product register.
void msub(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 8) & 0x1;
s64 prod = dsp_get_long_prod();
prod -= (s64)dsp_get_ax_l(sreg) * (s64)dsp_get_ax_h(sreg) * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// LSR16 $acR
// 1111 010r xxxx xxxx
// Logically shifts right accumulator $acR by 16.
void lsr16(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u64 acc = dsp_get_long_acc(areg);
acc >>= 16;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// ASR16 $acR
// 1001 r001 xxxx xxxx
// Arithmetically shifts right accumulator $acR by 16.
void asr16(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 11) & 0x1;
s64 acc = dsp_get_long_acc(areg);
acc >>= 16;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// LSL $acR, #I
// 0001 010r 00ii iiii
// Logically shifts left accumulator $acR by number specified by value I.
void lsl(const UDSPInstruction& opc)
{
u16 shift = opc.ushift;
u64 acc = dsp_get_long_acc(opc.areg);
acc <<= shift;
dsp_set_long_acc(opc.areg, acc);
Update_SR_Register64(acc);
}
// LSR $acR, #I
// 0001 010r 01ii iiii
// Logically shifts left accumulator $acR by number specified by value
// calculated by negating sign extended bits 0-6.
void lsr(const UDSPInstruction& opc)
{
u16 shift = -opc.ushift;
u64 acc = dsp_get_long_acc(opc.areg);
// Lop off the extraneous sign extension our 64-bit fake accum causes
acc &= 0x000000FFFFFFFFFFULL;
acc >>= shift;
dsp_set_long_acc(opc.areg, (s64)acc);
Update_SR_Register64(acc);
}
// ASL $acR, #I
// 0001 010r 10ii iiii
// Logically shifts left accumulator $acR by number specified by value I.
void asl(const UDSPInstruction& opc)
{
u16 shift = opc.ushift;
// arithmetic shift
u64 acc = dsp_get_long_acc(opc.areg);
acc <<= shift;
dsp_set_long_acc(opc.areg, acc);
Update_SR_Register64(acc);
}
// ASR $acR, #I
// 0001 010r 11ii iiii
// Arithmetically shifts right accumulator $acR by number specified by
// value calculated by negating sign extended bits 0-6.
void asr(const UDSPInstruction& opc)
{
u16 shift = -opc.ushift;
// arithmetic shift
s64 acc = dsp_get_long_acc(opc.areg);
acc >>= shift;
dsp_set_long_acc(opc.areg, acc);
Update_SR_Register64(acc);
}
//-------------------------------------------------------------
// hcs give me this code!!
// DAR $arD
// 0000 0000 0000 01dd
// Decrement address register $arD.
// More docs needed - the operation is really odd!
void dar(const UDSPInstruction& opc)
{
int reg = opc.hex & 0x3;
int temp = g_dsp.r[reg] + g_dsp.r[DSP_REG_R08];
if (temp <= 0x7ff) // ???
g_dsp.r[reg] = temp;
else
g_dsp.r[reg]--;
}
// hcs give me this code!!
// IAR $arD
// 0000 0000 0000 10dd
// Increment address register $arD.
// More docs needed - the operation is really odd!
void iar(const UDSPInstruction& opc)
{
int reg = opc.hex & 0x3;
int temp = g_dsp.r[reg] + g_dsp.r[DSP_REG_R08];
if (temp <= 0x7ff) // ???
g_dsp.r[reg] = temp;
else
g_dsp.r[reg]++;
}
//-------------------------------------------------------------
// SBCLR #I
// 0001 0011 0000 0iii
// bit of status register $sr. Bit number is calculated by adding 6 to
// immediate value I.
void sbclr(const UDSPInstruction& opc)
{
u8 bit = (opc.hex & 0xff) + 6;
g_dsp.r[DSP_REG_SR] &= ~(1 << bit);
}
// SBSET #I
// 0001 0010 0000 0iiii
// Set bit of status register $sr. Bit number is calculated by adding 6 to
// immediate value I.
void sbset(const UDSPInstruction& opc)
{
u8 bit = (opc.hex & 0xff) + 6;
g_dsp.r[DSP_REG_SR] |= (1 << bit);
}
// FIXME inside
// This seem to be a bunch of bit setters, possibly flippig bits in SR.
// These bits may have effects on the operation of the multiplier or
// accumulators.
// Hermes' demo sets the following defaults, hence that's the most important
// mode to explore for the moment:
// SET40
// CLR15
// M0
// Gonna be fun to explore all 8 possible combinations .. ugh.
void srbith(const UDSPInstruction& opc)
{
switch ((opc.hex >> 8) & 0xf)
{
// M0 seems to be the default. M2 is used in functions in Zelda
// and then reset with M0 at the end. Like the other bits here, it's
// done around loops with lots of multiplications.
case 0xa: // M2
//ERROR_LOG(DSPLLE, "M2");
break;
// FIXME: Both of these appear in the beginning of the Wind Waker
case 0xb: // M0
//ERROR_LOG(DSPLLE, "M0");
break;
// 15-bit precision? clamping? no idea :(
// CLR15 seems to be the default.
case 0xc: // CLR15
//ERROR_LOG(DSPLLE, "CLR15");
break;
case 0xd: // SET15
//ERROR_LOG(DSPLLE, "SET15");
break;
// 40-bit precision? clamping? no idea :(
// 40 seems to be the default.
case 0xe: // SET40 (really, clear SR's 0x4000?) something about "set 40-bit operation"?
g_dsp.r[DSP_REG_SR] &= ~(1 << 14);
//ERROR_LOG(DSPLLE, "SET40");
break;
case 0xf: // SET16 (really, set SR's 0x4000?) something about "set 16-bit operation"?
// that doesnt happen on a real console << what does this comment mean?
g_dsp.r[DSP_REG_SR] |= (1 << 14);
//ERROR_LOG(DSPLLE, "SET16");
break;
default:
break;
}
}
//-------------------------------------------------------------
// MOVP $acD
// 0110 111d xxxx xxxx
// Moves multiply product from $prod register to accumulator $acD register.
void movp(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 prod = dsp_get_long_prod();
dsp_set_long_acc(dreg, prod);
Update_SR_Register64(prod);
}
// MUL $axS.l, $axS.h
// 1001 s000 xxxx xxxx
// Multiply low part $axS.l of secondary accumulator $axS by high part
// $axS.h of secondary accumulator $axS (treat them both as signed).
void mul(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 11) & 0x1;
s64 prod = (s64)dsp_get_ax_h(sreg) * (s64)dsp_get_ax_l(sreg) * GetMultiplyModifier();
dsp_set_long_prod(prod);
// FIXME: no update in duddie's docs
Update_SR_Register64(prod);
}
// MULAC $axS.l, $axS.h, $acR
// 1001 s10r xxxx xxxx
// Add product register to accumulator register $acR. Multiply low part
// $axS.l of secondary accumulator $axS by high part $axS.h of secondary
// accumulator $axS (treat them both as signed).
void mulac(const UDSPInstruction& opc)
{
// add old prod to acc
u8 rreg = (opc.hex >> 8) & 0x1;
s64 acR = dsp_get_long_acc(rreg) + dsp_get_long_prod();
dsp_set_long_acc(rreg, acR);
// calculate new prod
u8 sreg = (opc.hex >> 11) & 0x1;
s64 prod = dsp_get_ax_l(sreg) * dsp_get_ax_h(sreg) * GetMultiplyModifier();
dsp_set_long_prod(prod);
// FIXME: no update in duddie's docs
Update_SR_Register64(prod);
}
// MULMV $axS.l, $axS.h, $acR
// 1001 s11r xxxx xxxx
// Move product register to accumulator register $acR. Multiply low part
// $axS.l of secondary accumulator $axS by high part $axS.h of secondary
// accumulator $axS (treat them both as signed).
void mulmv(const UDSPInstruction& opc)
{
u8 rreg = (opc.hex >> 8) & 0x1;
u8 sreg = ((opc.hex >> 11) & 0x1);
s64 prod = dsp_get_long_prod();
s64 acc = prod;
dsp_set_long_acc(rreg, acc);
s64 val1 = (s16)g_dsp.r[sreg + DSP_REG_AXL0];
s64 val2 = (s16)g_dsp.r[sreg + DSP_REG_AXH0];
prod = val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// MULMVZ $axS.l, $axS.h, $acR
// 1001 s01r xxxx xxxx
// Move product register to accumulator register $acR and clear low part
// of accumulator register $acR.l. Multiply low part $axS.l of secondary
// accumulator $axS by high part $axS.h of secondary accumulator $axS (treat
// them both as signed).
void mulmvz(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 11) & 0x1;
u8 rreg = (opc.hex >> 8) & 0x1;
// overwrite acc and clear low part
s64 prod = dsp_get_long_prod();
s64 acc = prod & ~0xffff;
dsp_set_long_acc(rreg, acc);
// math prod
prod = (s64)g_dsp.r[DSP_REG_AXL0 + sreg] * (s64)g_dsp.r[DSP_REG_AXH0 + sreg] * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// MULX $ax0.S, $ax1.T
// 101s t000 xxxx xxxx
// Multiply one part $ax0 by one part $ax1 (treat them both as signed).
// Part is selected by S and T bits. Zero selects low part, one selects high part.
void mulx(const UDSPInstruction& opc)
{
u8 sreg = ((opc.hex >> 12) & 0x1);
u8 treg = ((opc.hex >> 11) & 0x1);
s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// MULXAC $ax0.S, $ax1.T, $acR
// 101s t01r xxxx xxxx
// Add product register to accumulator register $acR. Multiply one part
// $ax0 by one part $ax1 (treat them both as signed). Part is selected by S and
// T bits. Zero selects low part, one selects high part.
void mulxac(const UDSPInstruction& opc)
{
// add old prod to acc
u8 rreg = (opc.hex >> 8) & 0x1;
s64 acR = dsp_get_long_acc(rreg) + dsp_get_long_prod();
dsp_set_long_acc(rreg, acR);
// math new prod
u8 sreg = (opc.hex >> 12) & 0x1;
u8 treg = (opc.hex >> 11) & 0x1;
s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// MULXMV $ax0.S, $ax1.T, $acR
// 101s t11r xxxx xxxx
// Move product register to accumulator register $acR. Multiply one part
// $ax0 by one part $ax1 (treat them both as signed). Part is selected by S and
// T bits. Zero selects low part, one selects high part.
void mulxmv(const UDSPInstruction& opc)
{
// add old prod to acc
u8 rreg = ((opc.hex >> 8) & 0x1);
s64 acR = dsp_get_long_prod();
dsp_set_long_acc(rreg, acR);
// math new prod
u8 sreg = (opc.hex >> 12) & 0x1;
u8 treg = (opc.hex >> 11) & 0x1;
s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// MULXMV $ax0.S, $ax1.T, $acR
// 101s t01r xxxx xxxx
// Move product register to accumulator register $acR and clear low part
// of accumulator register $acR.l. Multiply one part $ax0 by one part $ax1 (treat
// them both as signed). Part is selected by S and T bits. Zero selects low part,
// one selects high part.
void mulxmvz(const UDSPInstruction& opc)
{
// overwrite acc and clear low part
u8 rreg = (opc.hex >> 8) & 0x1;
s64 prod = dsp_get_long_prod();
s64 acc = prod & ~0xffff;
dsp_set_long_acc(rreg, acc);
// math prod
u8 sreg = (opc.hex >> 12) & 0x1;
u8 treg = (opc.hex >> 11) & 0x1;
s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
prod = val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// SUB $acD, $ac(1-D)
// 0101 110d xxxx xxxx
// Subtracts accumulator $ac(1-D) from accumulator register $acD.
void sub(const UDSPInstruction& opc)
{
u8 D = (opc.hex >> 8) & 0x1;
s64 acc1 = dsp_get_long_acc(D);
s64 acc2 = dsp_get_long_acc(1 - D);
acc1 -= acc2;
dsp_set_long_acc(D, acc1);
Update_SR_Register64(acc1);
}
//-------------------------------------------------------------
//
// --- Table E
//
//-------------------------------------------------------------
// MADDX ax0.S ax1.T
// 1110 00st xxxx xxxx
// Multiply one part of secondary accumulator $ax0 (selected by S) by
// one part of secondary accumulator $ax1 (selected by T) (treat them both as
// signed) and add result to product register.
void maddx(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 treg = (opc.hex >> 8) & 0x1;
s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = dsp_get_long_prod();
prod += val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// MSUBX $(0x18+S*2), $(0x19+T*2)
// 1110 01st xxxx xxxx
// Multiply one part of secondary accumulator $ax0 (selected by S) by
// one part of secondary accumulator $ax1 (selected by T) (treat them both as
// signed) and subtract result from product register.
void msubx(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 treg = (opc.hex >> 8) & 0x1;
s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = dsp_get_long_prod();
prod -= val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// MADDC $acS.m, $axT.h
// 1110 10st xxxx xxxx
// Multiply middle part of accumulator $acS.m by high part of secondary
// accumulator $axT.h (treat them both as signed) and add result to product
// register.
void maddc(const UDSPInstruction& opc)
{
u32 sreg = (opc.hex >> 9) & 0x1;
u32 treg = (opc.hex >> 8) & 0x1;
s64 val1 = dsp_get_acc_m(sreg);
s64 val2 = dsp_get_ax_h(treg);
s64 prod = dsp_get_long_prod();
prod += val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// MSUBC $acS.m, $axT.h
// 1110 11st xxxx xxxx
// Multiply middle part of accumulator $acS.m by high part of secondary
// accumulator $axT.h (treat them both as signed) and subtract result from
// product register.
void msubc(const UDSPInstruction& opc)
{
u32 sreg = (opc.hex >> 9) & 0x1;
u32 treg = (opc.hex >> 8) & 0x1;
s64 val1 = dsp_get_acc_m(sreg);
s64 val2 = dsp_get_ax_h(treg);
s64 prod = dsp_get_long_prod();
prod -= val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
// SRS @M, $(0x18+S)
// 0010 1sss mmmm mmmm
// Store value from register $(0x18+S) to a memory pointed by address M.
// (8-bit sign extended).
// FIXME: Perform additional operation depending on destination register.
// Note: pc+=2 in duddie's doc seems wrong
void srs(const UDSPInstruction& opc)
{
u8 reg = ((opc.hex >> 8) & 0x7) + 0x18;
u16 addr = (u16)(s16)(s8)opc.hex;
dsp_dmem_write(addr, g_dsp.r[reg]);
}
// LRS $(0x18+D), @M
// 0010 0ddd mmmm mmmm
// Move value from data memory pointed by address M (8-bit sign
// extended) to register $(0x18+D).
// FIXME: Perform additional operation depending on destination register.
// Note: pc+=2 in duddie's doc seems wrong
void lrs(const UDSPInstruction& opc)
{
u8 reg = ((opc.hex >> 8) & 0x7) + 0x18;
u16 addr = (u16)(s16)(s8)opc.hex;
g_dsp.r[reg] = dsp_dmem_read(addr);
}
} // namespace