dolphin/Source/Core/VideoCommon/VertexLoaderManager.cpp
comex 63c62b277d Some changes to VertexLoaderManager:
- Lazily create the native vertex format (which involves GL calls) from
RunVertices rather than RefreshLoader itself, freeing the latter to be
run from the CPU thread (hopefully).

- In order to avoid useless allocations while doing so, store the native
format inside the VertexLoader rather than using a cache entry.

- Wrap the s_vertex_loader_map in a lock, for similar reasons.
2014-09-28 21:23:28 -04:00

266 lines
5.7 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <algorithm>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <utility>
#include <vector>
#include "Common/CommonFuncs.h"
#include "Core/HW/Memmap.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/IndexGenerator.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexLoader.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoCommon.h"
static int s_attr_dirty; // bitfield
static NativeVertexFormat* s_current_vtx_fmt;
static VertexLoader* s_VertexLoaders[8];
namespace std
{
template <>
struct hash<VertexLoaderUID>
{
size_t operator()(const VertexLoaderUID& uid) const
{
return uid.GetHash();
}
};
}
typedef std::unordered_map<VertexLoaderUID, std::unique_ptr<VertexLoader>> VertexLoaderMap;
namespace VertexLoaderManager
{
static std::mutex s_vertex_loader_map_lock;
static VertexLoaderMap s_vertex_loader_map;
// TODO - change into array of pointers. Keep a map of all seen so far.
void Init()
{
MarkAllDirty();
for (auto& map_entry : s_VertexLoaders)
{
map_entry = nullptr;
}
RecomputeCachedArraybases();
}
void Shutdown()
{
std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
s_vertex_loader_map.clear();
VertexLoader::ClearNativeVertexFormatCache();
}
namespace
{
struct entry
{
std::string text;
u64 num_verts;
bool operator < (const entry &other) const
{
return num_verts > other.num_verts;
}
};
}
void AppendListToString(std::string *dest)
{
std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
std::vector<entry> entries;
size_t total_size = 0;
for (const auto& map_entry : s_vertex_loader_map)
{
entry e;
map_entry.second->AppendToString(&e.text);
e.num_verts = map_entry.second->GetNumLoadedVerts();
entries.push_back(e);
total_size += e.text.size() + 1;
}
sort(entries.begin(), entries.end());
dest->reserve(dest->size() + total_size);
for (const entry& entry : entries)
{
dest->append(entry.text);
}
}
void MarkAllDirty()
{
s_attr_dirty = 0xff;
}
static VertexLoader* RefreshLoader(int vtx_attr_group)
{
VertexLoader* loader;
if ((s_attr_dirty >> vtx_attr_group) & 1)
{
VertexLoaderUID uid(g_VtxDesc, g_VtxAttr[vtx_attr_group]);
std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
VertexLoaderMap::iterator iter = s_vertex_loader_map.find(uid);
if (iter != s_vertex_loader_map.end())
{
loader = iter->second.get();
}
else
{
loader = new VertexLoader(g_VtxDesc, g_VtxAttr[vtx_attr_group]);
s_vertex_loader_map[uid] = std::unique_ptr<VertexLoader>(loader);
INCSTAT(stats.numVertexLoaders);
}
s_VertexLoaders[vtx_attr_group] = loader;
s_attr_dirty &= ~(1 << vtx_attr_group);
} else {
loader = s_VertexLoaders[vtx_attr_group];
}
return loader;
}
bool RunVertices(int vtx_attr_group, int primitive, int count, size_t buf_size, bool skip_drawing)
{
if (!count)
return true;
VertexLoader* loader = RefreshLoader(vtx_attr_group);
size_t size = count * loader->GetVertexSize();
if (buf_size < size)
return false;
if (skip_drawing || (bpmem.genMode.cullmode == GenMode::CULL_ALL && primitive < 5))
{
// if cull mode is CULL_ALL, ignore triangles and quads
DataSkip((u32)size);
return true;
}
NativeVertexFormat* native = loader->GetNativeVertexFormat();
// If the native vertex format changed, force a flush.
if (native != s_current_vtx_fmt)
VertexManager::Flush();
s_current_vtx_fmt = native;
VertexManager::PrepareForAdditionalData(primitive, count,
loader->GetNativeVertexDeclaration().stride);
loader->RunVertices(g_VtxAttr[vtx_attr_group], primitive, count);
IndexGenerator::AddIndices(primitive, count);
ADDSTAT(stats.thisFrame.numPrims, count);
INCSTAT(stats.thisFrame.numPrimitiveJoins);
return true;
}
int GetVertexSize(int vtx_attr_group)
{
return RefreshLoader(vtx_attr_group)->GetVertexSize();
}
NativeVertexFormat* GetCurrentVertexFormat()
{
return s_current_vtx_fmt;
}
} // namespace
void LoadCPReg(u32 sub_cmd, u32 value)
{
switch (sub_cmd & 0xF0)
{
case 0x30:
VertexShaderManager::SetTexMatrixChangedA(value);
break;
case 0x40:
VertexShaderManager::SetTexMatrixChangedB(value);
break;
case 0x50:
g_VtxDesc.Hex &= ~0x1FFFF; // keep the Upper bits
g_VtxDesc.Hex |= value;
s_attr_dirty = 0xFF;
break;
case 0x60:
g_VtxDesc.Hex &= 0x1FFFF; // keep the lower 17Bits
g_VtxDesc.Hex |= (u64)value << 17;
s_attr_dirty = 0xFF;
break;
case 0x70:
_assert_((sub_cmd & 0x0F) < 8);
g_VtxAttr[sub_cmd & 7].g0.Hex = value;
s_attr_dirty |= 1 << (sub_cmd & 7);
break;
case 0x80:
_assert_((sub_cmd & 0x0F) < 8);
g_VtxAttr[sub_cmd & 7].g1.Hex = value;
s_attr_dirty |= 1 << (sub_cmd & 7);
break;
case 0x90:
_assert_((sub_cmd & 0x0F) < 8);
g_VtxAttr[sub_cmd & 7].g2.Hex = value;
s_attr_dirty |= 1 << (sub_cmd & 7);
break;
// Pointers to vertex arrays in GC RAM
case 0xA0:
arraybases[sub_cmd & 0xF] = value;
cached_arraybases[sub_cmd & 0xF] = Memory::GetPointer(value);
break;
case 0xB0:
arraystrides[sub_cmd & 0xF] = value & 0xFF;
break;
}
}
void FillCPMemoryArray(u32 *memory)
{
memory[0x30] = MatrixIndexA.Hex;
memory[0x40] = MatrixIndexB.Hex;
memory[0x50] = (u32)g_VtxDesc.Hex;
memory[0x60] = (u32)(g_VtxDesc.Hex >> 17);
for (int i = 0; i < 8; ++i)
{
memory[0x70 + i] = g_VtxAttr[i].g0.Hex;
memory[0x80 + i] = g_VtxAttr[i].g1.Hex;
memory[0x90 + i] = g_VtxAttr[i].g2.Hex;
}
for (int i = 0; i < 16; ++i)
{
memory[0xA0 + i] = arraybases[i];
memory[0xB0 + i] = arraystrides[i];
}
}
void RecomputeCachedArraybases()
{
for (int i = 0; i < 16; i++)
{
cached_arraybases[i] = Memory::GetPointer(arraybases[i]);
}
}