dolphin/Source/Core/VideoBackends/Software/EfbInterface.cpp
Pierre Bourdon e149ad4f0a
treewide: convert GPLv2+ license info to SPDX tags
SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.
2021-07-05 04:35:56 +02:00

714 lines
18 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoBackends/Software/EfbInterface.h"
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstring>
#include <vector>
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "VideoBackends/Software/CopyRegion.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/LookUpTables.h"
#include "VideoCommon/PerfQueryBase.h"
#include "VideoCommon/VideoCommon.h"
namespace EfbInterface
{
static std::array<u8, EFB_WIDTH * EFB_HEIGHT * 6> efb;
static std::array<u32, PQ_NUM_MEMBERS> perf_values;
static inline u32 GetColorOffset(u16 x, u16 y)
{
return (x + y * EFB_WIDTH) * 3;
}
static inline u32 GetDepthOffset(u16 x, u16 y)
{
constexpr u32 depth_buffer_start = EFB_WIDTH * EFB_HEIGHT * 3;
return (x + y * EFB_WIDTH) * 3 + depth_buffer_start;
}
static void SetPixelAlphaOnly(u32 offset, u8 a)
{
switch (bpmem.zcontrol.pixel_format)
{
case PixelFormat::RGB8_Z24:
case PixelFormat::Z24:
case PixelFormat::RGB565_Z16:
// do nothing
break;
case PixelFormat::RGBA6_Z24:
{
u32 a32 = a;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xffffffc0;
val |= (a32 >> 2) & 0x0000003f;
*dst = val;
}
break;
default:
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
break;
}
}
static void SetPixelColorOnly(u32 offset, u8* rgb)
{
switch (bpmem.zcontrol.pixel_format)
{
case PixelFormat::RGB8_Z24:
case PixelFormat::Z24:
{
u32 src = *(u32*)rgb;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= src >> 8;
*dst = val;
}
break;
case PixelFormat::RGBA6_Z24:
{
u32 src = *(u32*)rgb;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff00003f;
val |= (src >> 4) & 0x00000fc0; // blue
val |= (src >> 6) & 0x0003f000; // green
val |= (src >> 8) & 0x00fc0000; // red
*dst = val;
}
break;
case PixelFormat::RGB565_Z16:
{
INFO_LOG_FMT(VIDEO, "RGB565_Z16 is not supported correctly yet");
u32 src = *(u32*)rgb;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= src >> 8;
*dst = val;
}
break;
default:
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
break;
}
}
static void SetPixelAlphaColor(u32 offset, u8* color)
{
switch (bpmem.zcontrol.pixel_format)
{
case PixelFormat::RGB8_Z24:
case PixelFormat::Z24:
{
u32 src = *(u32*)color;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= src >> 8;
*dst = val;
}
break;
case PixelFormat::RGBA6_Z24:
{
u32 src = *(u32*)color;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= (src >> 2) & 0x0000003f; // alpha
val |= (src >> 4) & 0x00000fc0; // blue
val |= (src >> 6) & 0x0003f000; // green
val |= (src >> 8) & 0x00fc0000; // red
*dst = val;
}
break;
case PixelFormat::RGB565_Z16:
{
INFO_LOG_FMT(VIDEO, "RGB565_Z16 is not supported correctly yet");
u32 src = *(u32*)color;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= src >> 8;
*dst = val;
}
break;
default:
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
break;
}
}
static u32 GetPixelColor(u32 offset)
{
u32 src;
std::memcpy(&src, &efb[offset], sizeof(u32));
switch (bpmem.zcontrol.pixel_format)
{
case PixelFormat::RGB8_Z24:
case PixelFormat::Z24:
return 0xff | ((src & 0x00ffffff) << 8);
case PixelFormat::RGBA6_Z24:
return Convert6To8(src & 0x3f) | // Alpha
Convert6To8((src >> 6) & 0x3f) << 8 | // Blue
Convert6To8((src >> 12) & 0x3f) << 16 | // Green
Convert6To8((src >> 18) & 0x3f) << 24; // Red
case PixelFormat::RGB565_Z16:
INFO_LOG_FMT(VIDEO, "RGB565_Z16 is not supported correctly yet");
return 0xff | ((src & 0x00ffffff) << 8);
default:
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
return 0;
}
}
static void SetPixelDepth(u32 offset, u32 depth)
{
switch (bpmem.zcontrol.pixel_format)
{
case PixelFormat::RGB8_Z24:
case PixelFormat::RGBA6_Z24:
case PixelFormat::Z24:
{
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= depth & 0x00ffffff;
*dst = val;
}
break;
case PixelFormat::RGB565_Z16:
{
INFO_LOG_FMT(VIDEO, "RGB565_Z16 is not supported correctly yet");
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= depth & 0x00ffffff;
*dst = val;
}
break;
default:
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
break;
}
}
static u32 GetPixelDepth(u32 offset)
{
u32 depth = 0;
switch (bpmem.zcontrol.pixel_format)
{
case PixelFormat::RGB8_Z24:
case PixelFormat::RGBA6_Z24:
case PixelFormat::Z24:
{
depth = (*(u32*)&efb[offset]) & 0x00ffffff;
}
break;
case PixelFormat::RGB565_Z16:
{
INFO_LOG_FMT(VIDEO, "RGB565_Z16 is not supported correctly yet");
depth = (*(u32*)&efb[offset]) & 0x00ffffff;
}
break;
default:
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
break;
}
return depth;
}
static u32 GetSourceFactor(u8* srcClr, u8* dstClr, SrcBlendFactor mode)
{
switch (mode)
{
case SrcBlendFactor::Zero:
return 0;
case SrcBlendFactor::One:
return 0xffffffff;
case SrcBlendFactor::DstClr:
return *(u32*)dstClr;
case SrcBlendFactor::InvDstClr:
return 0xffffffff - *(u32*)dstClr;
case SrcBlendFactor::SrcAlpha:
{
u8 alpha = srcClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
case SrcBlendFactor::InvSrcAlpha:
{
u8 alpha = 0xff - srcClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
case SrcBlendFactor::DstAlpha:
{
u8 alpha = dstClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
case SrcBlendFactor::InvDstAlpha:
{
u8 alpha = 0xff - dstClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
}
return 0;
}
static u32 GetDestinationFactor(u8* srcClr, u8* dstClr, DstBlendFactor mode)
{
switch (mode)
{
case DstBlendFactor::Zero:
return 0;
case DstBlendFactor::One:
return 0xffffffff;
case DstBlendFactor::SrcClr:
return *(u32*)srcClr;
case DstBlendFactor::InvSrcClr:
return 0xffffffff - *(u32*)srcClr;
case DstBlendFactor::SrcAlpha:
{
u8 alpha = srcClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
case DstBlendFactor::InvSrcAlpha:
{
u8 alpha = 0xff - srcClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
case DstBlendFactor::DstAlpha:
{
u8 alpha = dstClr[ALP_C] & 0xff;
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
case DstBlendFactor::InvDstAlpha:
{
u8 alpha = 0xff - dstClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
}
return 0;
}
static void BlendColor(u8* srcClr, u8* dstClr)
{
u32 srcFactor = GetSourceFactor(srcClr, dstClr, bpmem.blendmode.srcfactor);
u32 dstFactor = GetDestinationFactor(srcClr, dstClr, bpmem.blendmode.dstfactor);
for (int i = 0; i < 4; i++)
{
// add MSB of factors to make their range 0 -> 256
u32 sf = (srcFactor & 0xff);
sf += sf >> 7;
u32 df = (dstFactor & 0xff);
df += df >> 7;
u32 color = (srcClr[i] * sf + dstClr[i] * df) >> 8;
dstClr[i] = (color > 255) ? 255 : color;
dstFactor >>= 8;
srcFactor >>= 8;
}
}
static void LogicBlend(u32 srcClr, u32* dstClr, LogicOp op)
{
switch (op)
{
case LogicOp::Clear:
*dstClr = 0;
break;
case LogicOp::And:
*dstClr = srcClr & *dstClr;
break;
case LogicOp::AndReverse:
*dstClr = srcClr & (~*dstClr);
break;
case LogicOp::Copy:
*dstClr = srcClr;
break;
case LogicOp::AndInverted:
*dstClr = (~srcClr) & *dstClr;
break;
case LogicOp::NoOp:
// Do nothing
break;
case LogicOp::Xor:
*dstClr = srcClr ^ *dstClr;
break;
case LogicOp::Or:
*dstClr = srcClr | *dstClr;
break;
case LogicOp::Nor:
*dstClr = ~(srcClr | *dstClr);
break;
case LogicOp::Equiv:
*dstClr = ~(srcClr ^ *dstClr);
break;
case LogicOp::Invert:
*dstClr = ~*dstClr;
break;
case LogicOp::OrReverse:
*dstClr = srcClr | (~*dstClr);
break;
case LogicOp::CopyInverted:
*dstClr = ~srcClr;
break;
case LogicOp::OrInverted:
*dstClr = (~srcClr) | *dstClr;
break;
case LogicOp::Nand:
*dstClr = ~(srcClr & *dstClr);
break;
case LogicOp::Set:
*dstClr = 0xffffffff;
break;
}
}
static void SubtractBlend(u8* srcClr, u8* dstClr)
{
for (int i = 0; i < 4; i++)
{
int c = (int)dstClr[i] - (int)srcClr[i];
dstClr[i] = (c < 0) ? 0 : c;
}
}
static void Dither(u16 x, u16 y, u8* color)
{
// No blending for RGB8 mode
if (!bpmem.blendmode.dither || bpmem.zcontrol.pixel_format != PixelFormat::RGBA6_Z24)
return;
// Flipper uses a standard 2x2 Bayer Matrix for 6 bit dithering
static const u8 dither[2][2] = {{0, 2}, {3, 1}};
// Only the color channels are dithered?
for (int i = BLU_C; i <= RED_C; i++)
color[i] = ((color[i] - (color[i] >> 6)) + dither[y & 1][x & 1]) & 0xfc;
}
void BlendTev(u16 x, u16 y, u8* color)
{
const u32 offset = GetColorOffset(x, y);
u32 dstClr = GetPixelColor(offset);
u8* dstClrPtr = (u8*)&dstClr;
if (bpmem.blendmode.blendenable)
{
if (bpmem.blendmode.subtract)
SubtractBlend(color, dstClrPtr);
else
BlendColor(color, dstClrPtr);
}
else if (bpmem.blendmode.logicopenable)
{
LogicBlend(*((u32*)color), &dstClr, bpmem.blendmode.logicmode);
}
else
{
dstClrPtr = color;
}
if (bpmem.dstalpha.enable)
dstClrPtr[ALP_C] = bpmem.dstalpha.alpha;
if (bpmem.blendmode.colorupdate)
{
Dither(x, y, dstClrPtr);
if (bpmem.blendmode.alphaupdate)
SetPixelAlphaColor(offset, dstClrPtr);
else
SetPixelColorOnly(offset, dstClrPtr);
}
else if (bpmem.blendmode.alphaupdate)
{
SetPixelAlphaOnly(offset, dstClrPtr[ALP_C]);
}
}
void SetColor(u16 x, u16 y, u8* color)
{
u32 offset = GetColorOffset(x, y);
if (bpmem.blendmode.colorupdate)
{
if (bpmem.blendmode.alphaupdate)
SetPixelAlphaColor(offset, color);
else
SetPixelColorOnly(offset, color);
}
else if (bpmem.blendmode.alphaupdate)
{
SetPixelAlphaOnly(offset, color[ALP_C]);
}
}
void SetDepth(u16 x, u16 y, u32 depth)
{
if (bpmem.zmode.updateenable)
SetPixelDepth(GetDepthOffset(x, y), depth);
}
u32 GetColor(u16 x, u16 y)
{
u32 offset = GetColorOffset(x, y);
return GetPixelColor(offset);
}
static u32 VerticalFilter(const std::array<u32, 3>& colors,
const std::array<u8, 7>& filterCoefficients)
{
u8 in_colors[3][4];
std::memcpy(&in_colors, colors.data(), sizeof(in_colors));
// Alpha channel is not used
u8 out_color[4];
out_color[ALP_C] = 0;
// All Coefficients should sum to 64, otherwise the total brightness will change, which many games
// do on purpose to implement a brightness filter across the whole copy.
for (int i = BLU_C; i <= RED_C; i++)
{
// TODO: implement support for multisampling.
// In non-multisampling mode:
// * Coefficients 2, 3 and 4 sample from the current pixel.
// * Coefficients 0 and 1 sample from the pixel above this one
// * Coefficients 5 and 6 sample from the pixel below this one
int sum =
in_colors[0][i] * (filterCoefficients[0] + filterCoefficients[1]) +
in_colors[1][i] * (filterCoefficients[2] + filterCoefficients[3] + filterCoefficients[4]) +
in_colors[2][i] * (filterCoefficients[5] + filterCoefficients[6]);
// TODO: this clamping behavior appears to be correct, but isn't confirmed on hardware.
out_color[i] = std::min(255, sum >> 6); // clamp larger values to 255
}
u32 out_color32;
std::memcpy(&out_color32, out_color, sizeof(out_color32));
return out_color32;
}
static u32 GammaCorrection(u32 color, const float gamma_rcp)
{
u8 in_colors[4];
std::memcpy(&in_colors, &color, sizeof(in_colors));
u8 out_color[4];
for (int i = BLU_C; i <= RED_C; i++)
{
out_color[i] = static_cast<u8>(
std::clamp(std::pow(in_colors[i] / 255.0f, gamma_rcp) * 255.0f, 0.0f, 255.0f));
}
u32 out_color32;
std::memcpy(&out_color32, out_color, sizeof(out_color32));
return out_color32;
}
// For internal used only, return a non-normalized value, which saves work later.
static yuv444 ConvertColorToYUV(u32 color)
{
const u8 red = static_cast<u8>(color >> 24);
const u8 green = static_cast<u8>(color >> 16);
const u8 blue = static_cast<u8>(color >> 8);
// GameCube/Wii uses the BT.601 standard algorithm for converting to YCbCr; see
// http://www.equasys.de/colorconversion.html#YCbCr-RGBColorFormatConversion
return {static_cast<u8>(0.257f * red + 0.504f * green + 0.098f * blue),
static_cast<s8>(-0.148f * red + -0.291f * green + 0.439f * blue),
static_cast<s8>(0.439f * red + -0.368f * green + -0.071f * blue)};
}
u32 GetDepth(u16 x, u16 y)
{
u32 offset = GetDepthOffset(x, y);
return GetPixelDepth(offset);
}
u8* GetPixelPointer(u16 x, u16 y, bool depth)
{
if (depth)
return &efb[GetDepthOffset(x, y)];
return &efb[GetColorOffset(x, y)];
}
void EncodeXFB(u8* xfb_in_ram, u32 memory_stride, const MathUtil::Rectangle<int>& source_rect,
float y_scale, float gamma)
{
if (!xfb_in_ram)
{
WARN_LOG_FMT(VIDEO, "Tried to copy to invalid XFB address");
return;
}
const int left = source_rect.left;
const int right = source_rect.right;
const bool clamp_top = bpmem.triggerEFBCopy.clamp_top;
const bool clamp_bottom = bpmem.triggerEFBCopy.clamp_bottom;
const float gamma_rcp = 1.0f / gamma;
const auto filter_coefficients = bpmem.copyfilter.GetCoefficients();
// this assumes copies will always start on an even (YU) pixel and the
// copy always has an even width, which might not be true.
if (left & 1 || right & 1)
{
WARN_LOG_FMT(VIDEO, "Trying to copy XFB to from unaligned EFB source");
// this will show up as wrongly encoded
}
// Scanline buffer, leave room for borders
yuv444 scanline[EFB_WIDTH + 2];
static std::vector<yuv422_packed> source;
source.resize(EFB_WIDTH * EFB_HEIGHT);
yuv422_packed* src_ptr = &source[0];
for (int y = source_rect.top; y < source_rect.bottom; y++)
{
// Clamping behavior
// NOTE: when the clamp bits aren't set, the hardware will happily read beyond the EFB,
// which returns random garbage from the empty bus (confirmed by hardware tests).
//
// In our implementation, the garbage just so happens to be the top or bottom row.
// Statistically, that could happen.
const u16 y_prev = static_cast<u16>(std::max(clamp_top ? source_rect.top : 0, y - 1));
const u16 y_next =
static_cast<u16>(std::min<int>(clamp_bottom ? source_rect.bottom : EFB_HEIGHT, y + 1));
// Get a scanline of YUV pixels in 4:4:4 format
for (int i = 1, x = left; x < right; i++, x++)
{
// Get RGB colors
std::array<u32, 3> colors = {{GetColor(x, y_prev), GetColor(x, y), GetColor(x, y_next)}};
// Vertical Filter (Multisampling resolve, deflicker, brightness)
u32 filtered = VerticalFilter(colors, filter_coefficients);
// Gamma correction happens here.
filtered = GammaCorrection(filtered, gamma_rcp);
scanline[i] = ConvertColorToYUV(filtered);
}
// Flipper clamps the border colors
scanline[0] = scanline[1];
scanline[right + 1] = scanline[right];
// And Downsample them to 4:2:2
for (int i = 1, x = left; x < right; i += 2, x += 2)
{
// YU pixel
src_ptr[x].Y = scanline[i].Y + 16;
// we mix our color differences in 10 bit space so it will round more accurately
// U[i] = 1/4 * U[i-1] + 1/2 * U[i] + 1/4 * U[i+1]
src_ptr[x].UV = 128 + ((scanline[i - 1].U + (scanline[i].U << 1) + scanline[i + 1].U) >> 2);
// YV pixel
src_ptr[x + 1].Y = scanline[i + 1].Y + 16;
// V[i] = 1/4 * V[i-1] + 1/2 * V[i] + 1/4 * V[i+1]
src_ptr[x + 1].UV =
128 + ((scanline[i - 1].V + (scanline[i].V << 1) + scanline[i + 1].V) >> 2);
}
src_ptr += memory_stride;
}
const int src_width = source_rect.GetWidth();
const int src_height = source_rect.GetHeight();
const int dst_width = src_width;
const int dst_height = src_height * y_scale;
SW::CopyRegion(source.data(), src_width, src_height, reinterpret_cast<yuv422_packed*>(xfb_in_ram),
dst_width, dst_height);
}
bool ZCompare(u16 x, u16 y, u32 z)
{
u32 offset = GetDepthOffset(x, y);
u32 depth = GetPixelDepth(offset);
bool pass;
switch (bpmem.zmode.func)
{
case CompareMode::Never:
pass = false;
break;
case CompareMode::Less:
pass = z < depth;
break;
case CompareMode::Equal:
pass = z == depth;
break;
case CompareMode::LEqual:
pass = z <= depth;
break;
case CompareMode::Greater:
pass = z > depth;
break;
case CompareMode::NEqual:
pass = z != depth;
break;
case CompareMode::GEqual:
pass = z >= depth;
break;
case CompareMode::Always:
pass = true;
break;
default:
pass = false;
ERROR_LOG_FMT(VIDEO, "Bad Z compare mode {}", bpmem.zmode.func);
break;
}
if (pass && bpmem.zmode.updateenable)
{
SetPixelDepth(offset, z);
}
return pass;
}
u32 GetPerfQueryResult(PerfQueryType type)
{
return perf_values[type];
}
void ResetPerfQuery()
{
perf_values = {};
}
void IncPerfCounterQuadCount(PerfQueryType type)
{
// NOTE: hardware doesn't process individual pixels but quads instead.
// Current software renderer architecture works on pixels though, so
// we have this "quad" hack here to only increment the registers on
// every fourth rendered pixel
static u32 quad[PQ_NUM_MEMBERS];
if (++quad[type] != 3)
return;
quad[type] = 0;
++perf_values[type];
}
} // namespace EfbInterface