dolphin/Source/Core/VideoCommon/RenderBase.cpp
Admiral H. Curtiss d97bc0d359 Correctly adjust the rendered XFB region at non-native internal resolutions when XFB was loaded from console RAM.
If, for whatever reason, the XFB has to be loaded from console memory, it's possible that the texture is returned at native resolution instead of EFB-scaled resolution. In this case, our xfb_rect.right adjustment must also happen at native resolution instead of scaled resolution.
2018-09-13 19:39:49 +02:00

1051 lines
32 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#include "VideoCommon/RenderBase.h"
#include <cinttypes>
#include <cmath>
#include <memory>
#include <mutex>
#include <string>
#include <tuple>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Config/Config.h"
#include "Common/Event.h"
#include "Common/FileUtil.h"
#include "Common/Flag.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/Profiler.h"
#include "Common/StringUtil.h"
#include "Common/Thread.h"
#include "Common/Timer.h"
#include "Core/Config/SYSCONFSettings.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/FifoPlayer/FifoRecorder.h"
#include "Core/HW/VideoInterface.h"
#include "Core/Host.h"
#include "Core/Movie.h"
#include "VideoCommon/AVIDump.h"
#include "VideoCommon/AbstractFramebuffer.h"
#include "VideoCommon/AbstractStagingTexture.h"
#include "VideoCommon/AbstractTexture.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/CommandProcessor.h"
#include "VideoCommon/Debugger.h"
#include "VideoCommon/FPSCounter.h"
#include "VideoCommon/FramebufferManagerBase.h"
#include "VideoCommon/ImageWrite.h"
#include "VideoCommon/OnScreenDisplay.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/PostProcessing.h"
#include "VideoCommon/ShaderCache.h"
#include "VideoCommon/ShaderGenCommon.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
// TODO: Move these out of here.
int frameCount;
std::unique_ptr<Renderer> g_renderer;
static float AspectToWidescreen(float aspect)
{
return aspect * ((16.0f / 9.0f) / (4.0f / 3.0f));
}
Renderer::Renderer(int backbuffer_width, int backbuffer_height)
: m_backbuffer_width(backbuffer_width), m_backbuffer_height(backbuffer_height)
{
UpdateActiveConfig();
UpdateDrawRectangle();
CalculateTargetSize();
if (SConfig::GetInstance().bWii)
m_aspect_wide = Config::Get(Config::SYSCONF_WIDESCREEN);
m_surface_handle = Host_GetRenderHandle();
m_last_host_config_bits = ShaderHostConfig::GetCurrent().bits;
m_last_efb_multisamples = g_ActiveConfig.iMultisamples;
}
Renderer::~Renderer() = default;
void Renderer::Shutdown()
{
// First stop any framedumping, which might need to dump the last xfb frame. This process
// can require additional graphics sub-systems so it needs to be done first
ShutdownFrameDumping();
}
void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight,
float Gamma)
{
CheckFifoRecording();
if (!fbStride || !fbHeight)
return;
}
unsigned int Renderer::GetEFBScale() const
{
return m_efb_scale;
}
int Renderer::EFBToScaledX(int x) const
{
return x * static_cast<int>(m_efb_scale);
}
int Renderer::EFBToScaledY(int y) const
{
return y * static_cast<int>(m_efb_scale);
}
float Renderer::EFBToScaledXf(float x) const
{
return x * ((float)GetTargetWidth() / (float)EFB_WIDTH);
}
float Renderer::EFBToScaledYf(float y) const
{
return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT);
}
std::tuple<int, int> Renderer::CalculateTargetScale(int x, int y) const
{
return std::make_tuple(x * static_cast<int>(m_efb_scale), y * static_cast<int>(m_efb_scale));
}
// return true if target size changed
bool Renderer::CalculateTargetSize()
{
if (g_ActiveConfig.iEFBScale == EFB_SCALE_AUTO_INTEGRAL)
{
// Set a scale based on the window size
int width = EFB_WIDTH * m_target_rectangle.GetWidth() / m_last_xfb_width;
int height = EFB_HEIGHT * m_target_rectangle.GetHeight() / m_last_xfb_height;
m_efb_scale = std::max((width - 1) / EFB_WIDTH + 1, (height - 1) / EFB_HEIGHT + 1);
}
else
{
m_efb_scale = g_ActiveConfig.iEFBScale;
}
const u32 max_size = g_ActiveConfig.backend_info.MaxTextureSize;
if (max_size < EFB_WIDTH * m_efb_scale)
m_efb_scale = max_size / EFB_WIDTH;
int new_efb_width = 0;
int new_efb_height = 0;
std::tie(new_efb_width, new_efb_height) = CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT);
if (new_efb_width != m_target_width || new_efb_height != m_target_height)
{
m_target_width = new_efb_width;
m_target_height = new_efb_height;
PixelShaderManager::SetEfbScaleChanged(EFBToScaledXf(1), EFBToScaledYf(1));
return true;
}
return false;
}
std::tuple<TargetRectangle, TargetRectangle>
Renderer::ConvertStereoRectangle(const TargetRectangle& rc) const
{
// Resize target to half its original size
TargetRectangle draw_rc = rc;
if (g_ActiveConfig.stereo_mode == StereoMode::TAB)
{
// The height may be negative due to flipped rectangles
int height = rc.bottom - rc.top;
draw_rc.top += height / 4;
draw_rc.bottom -= height / 4;
}
else
{
int width = rc.right - rc.left;
draw_rc.left += width / 4;
draw_rc.right -= width / 4;
}
// Create two target rectangle offset to the sides of the backbuffer
TargetRectangle left_rc = draw_rc;
TargetRectangle right_rc = draw_rc;
if (g_ActiveConfig.stereo_mode == StereoMode::TAB)
{
left_rc.top -= m_backbuffer_height / 4;
left_rc.bottom -= m_backbuffer_height / 4;
right_rc.top += m_backbuffer_height / 4;
right_rc.bottom += m_backbuffer_height / 4;
}
else
{
left_rc.left -= m_backbuffer_width / 4;
left_rc.right -= m_backbuffer_width / 4;
right_rc.left += m_backbuffer_width / 4;
right_rc.right += m_backbuffer_width / 4;
}
return std::make_tuple(left_rc, right_rc);
}
void Renderer::SaveScreenshot(const std::string& filename, bool wait_for_completion)
{
// We must not hold the lock while waiting for the screenshot to complete.
{
std::lock_guard<std::mutex> lk(m_screenshot_lock);
m_screenshot_name = filename;
m_screenshot_request.Set();
}
if (wait_for_completion)
{
// This is currently only used by Android, and it was using a wait time of 2 seconds.
m_screenshot_completed.WaitFor(std::chrono::seconds(2));
}
}
bool Renderer::CheckForHostConfigChanges()
{
ShaderHostConfig new_host_config = ShaderHostConfig::GetCurrent();
if (new_host_config.bits == m_last_host_config_bits &&
m_last_efb_multisamples == g_ActiveConfig.iMultisamples)
{
return false;
}
m_last_host_config_bits = new_host_config.bits;
m_last_efb_multisamples = g_ActiveConfig.iMultisamples;
// Reload shaders.
OSD::AddMessage("Video config changed, reloading shaders.", OSD::Duration::NORMAL);
SetPipeline(nullptr);
g_vertex_manager->InvalidatePipelineObject();
g_shader_cache->SetHostConfig(new_host_config, g_ActiveConfig.iMultisamples);
return true;
}
// Create On-Screen-Messages
void Renderer::DrawDebugText()
{
std::string final_yellow, final_cyan;
if (g_ActiveConfig.bShowFPS || SConfig::GetInstance().m_ShowFrameCount)
{
if (g_ActiveConfig.bShowFPS)
final_cyan += StringFromFormat("FPS: %.2f", m_fps_counter.GetFPS());
if (g_ActiveConfig.bShowFPS && SConfig::GetInstance().m_ShowFrameCount)
final_cyan += " - ";
if (SConfig::GetInstance().m_ShowFrameCount)
{
final_cyan += StringFromFormat("Frame: %" PRIu64, Movie::GetCurrentFrame());
if (Movie::IsPlayingInput())
final_cyan += StringFromFormat("\nInput: %" PRIu64 " / %" PRIu64,
Movie::GetCurrentInputCount(), Movie::GetTotalInputCount());
}
final_cyan += "\n";
final_yellow += "\n";
}
if (SConfig::GetInstance().m_ShowLag)
{
final_cyan += StringFromFormat("Lag: %" PRIu64 "\n", Movie::GetCurrentLagCount());
final_yellow += "\n";
}
if (SConfig::GetInstance().m_ShowInputDisplay)
{
final_cyan += Movie::GetInputDisplay();
final_yellow += "\n";
}
if (SConfig::GetInstance().m_ShowRTC)
{
final_cyan += Movie::GetRTCDisplay();
final_yellow += "\n";
}
// OSD Menu messages
if (m_osd_message > 0)
{
m_osd_time = Common::Timer::GetTimeMs() + 3000;
m_osd_message = -m_osd_message;
}
if (static_cast<u32>(m_osd_time) > Common::Timer::GetTimeMs())
{
std::string res_text;
switch (g_ActiveConfig.iEFBScale)
{
case EFB_SCALE_AUTO_INTEGRAL:
res_text = "Auto (integral)";
break;
case 1:
res_text = "Native";
break;
default:
res_text = StringFromFormat("%dx", g_ActiveConfig.iEFBScale);
break;
}
const char* ar_text = "";
switch (g_ActiveConfig.aspect_mode)
{
case AspectMode::Stretch:
ar_text = "Stretch";
break;
case AspectMode::Analog:
ar_text = "Force 4:3";
break;
case AspectMode::AnalogWide:
ar_text = "Force 16:9";
break;
case AspectMode::Auto:
default:
ar_text = "Auto";
break;
}
const std::string audio_text = SConfig::GetInstance().m_IsMuted ?
"Muted" :
std::to_string(SConfig::GetInstance().m_Volume) + "%";
const char* const efbcopy_text = g_ActiveConfig.bSkipEFBCopyToRam ? "to Texture" : "to RAM";
const char* const xfbcopy_text = g_ActiveConfig.bSkipXFBCopyToRam ? "to Texture" : "to RAM";
// The rows
const std::string lines[] = {
std::string("Internal Resolution: ") + res_text,
std::string("Aspect Ratio: ") + ar_text + (g_ActiveConfig.bCrop ? " (crop)" : ""),
std::string("Copy EFB: ") + efbcopy_text,
std::string("Fog: ") + (g_ActiveConfig.bDisableFog ? "Disabled" : "Enabled"),
SConfig::GetInstance().m_EmulationSpeed <= 0 ?
"Speed Limit: Unlimited" :
StringFromFormat("Speed Limit: %li%%",
std::lround(SConfig::GetInstance().m_EmulationSpeed * 100.f)),
std::string("Copy XFB: ") + xfbcopy_text +
(g_ActiveConfig.bImmediateXFB ? " (Immediate)" : ""),
"Volume: " + audio_text,
};
enum
{
lines_count = sizeof(lines) / sizeof(*lines)
};
// The latest changed setting in yellow
for (int i = 0; i != lines_count; ++i)
{
if (m_osd_message == -i - 1)
final_yellow += lines[i];
final_yellow += '\n';
}
// The other settings in cyan
for (int i = 0; i != lines_count; ++i)
{
if (m_osd_message != -i - 1)
final_cyan += lines[i];
final_cyan += '\n';
}
}
final_cyan += Common::Profiler::ToString();
if (g_ActiveConfig.bOverlayStats)
final_cyan += Statistics::ToString();
if (g_ActiveConfig.bOverlayProjStats)
final_cyan += Statistics::ToStringProj();
// and then the text
RenderText(final_cyan, 20, 20, 0xFF00FFFF);
RenderText(final_yellow, 20, 20, 0xFFFFFF00);
}
float Renderer::CalculateDrawAspectRatio() const
{
if (g_ActiveConfig.aspect_mode == AspectMode::Stretch)
{
// If stretch is enabled, we prefer the aspect ratio of the window.
return (static_cast<float>(m_backbuffer_width) / static_cast<float>(m_backbuffer_height));
}
// The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio
if (g_ActiveConfig.aspect_mode == AspectMode::AnalogWide ||
(g_ActiveConfig.aspect_mode != AspectMode::Analog && m_aspect_wide))
{
return AspectToWidescreen(VideoInterface::GetAspectRatio());
}
else
{
return VideoInterface::GetAspectRatio();
}
}
bool Renderer::IsHeadless() const
{
return !m_surface_handle;
}
void Renderer::ChangeSurface(void* new_surface_handle)
{
std::lock_guard<std::mutex> lock(m_swap_mutex);
m_new_surface_handle = new_surface_handle;
m_surface_changed.Set();
}
void Renderer::ResizeSurface(int new_width, int new_height)
{
std::lock_guard<std::mutex> lock(m_swap_mutex);
m_new_backbuffer_width = new_width;
m_new_backbuffer_height = new_height;
m_surface_resized.Set();
}
std::tuple<float, float> Renderer::ScaleToDisplayAspectRatio(const int width,
const int height) const
{
// Scale either the width or height depending the content aspect ratio.
// This way we preserve as much resolution as possible when scaling.
float scaled_width = static_cast<float>(width);
float scaled_height = static_cast<float>(height);
const float draw_aspect = CalculateDrawAspectRatio();
if (scaled_width / scaled_height >= draw_aspect)
scaled_height = scaled_width / draw_aspect;
else
scaled_width = scaled_height * draw_aspect;
return std::make_tuple(scaled_width, scaled_height);
}
void Renderer::UpdateDrawRectangle()
{
// The rendering window size
const float win_width = static_cast<float>(m_backbuffer_width);
const float win_height = static_cast<float>(m_backbuffer_height);
// Update aspect ratio hack values
// Won't take effect until next frame
// Don't know if there is a better place for this code so there isn't a 1 frame delay
if (g_ActiveConfig.bWidescreenHack)
{
float source_aspect = VideoInterface::GetAspectRatio();
if (m_aspect_wide)
source_aspect = AspectToWidescreen(source_aspect);
float target_aspect = 0.0f;
switch (g_ActiveConfig.aspect_mode)
{
case AspectMode::Stretch:
target_aspect = win_width / win_height;
break;
case AspectMode::Analog:
target_aspect = VideoInterface::GetAspectRatio();
break;
case AspectMode::AnalogWide:
target_aspect = AspectToWidescreen(VideoInterface::GetAspectRatio());
break;
case AspectMode::Auto:
default:
target_aspect = source_aspect;
break;
}
float adjust = source_aspect / target_aspect;
if (adjust > 1)
{
// Vert+
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1 / adjust;
}
else
{
// Hor+
g_Config.fAspectRatioHackW = adjust;
g_Config.fAspectRatioHackH = 1;
}
}
else
{
// Hack is disabled
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1;
}
float draw_width, draw_height, crop_width, crop_height;
// get the picture aspect ratio
draw_width = crop_width = CalculateDrawAspectRatio();
draw_height = crop_height = 1;
// crop the picture to a standard aspect ratio
if (g_ActiveConfig.bCrop && g_ActiveConfig.aspect_mode != AspectMode::Stretch)
{
float expected_aspect = (g_ActiveConfig.aspect_mode == AspectMode::AnalogWide ||
(g_ActiveConfig.aspect_mode != AspectMode::Analog && m_aspect_wide)) ?
(16.0f / 9.0f) :
(4.0f / 3.0f);
if (crop_width / crop_height >= expected_aspect)
{
// the picture is flatter than it should be
crop_width = crop_height * expected_aspect;
}
else
{
// the picture is skinnier than it should be
crop_height = crop_width / expected_aspect;
}
}
// scale the picture to fit the rendering window
if (win_width / win_height >= crop_width / crop_height)
{
// the window is flatter than the picture
draw_width *= win_height / crop_height;
crop_width *= win_height / crop_height;
draw_height *= win_height / crop_height;
crop_height = win_height;
}
else
{
// the window is skinnier than the picture
draw_width *= win_width / crop_width;
draw_height *= win_width / crop_width;
crop_height *= win_width / crop_width;
crop_width = win_width;
}
// Clamp the draw width/height to the screen size, to ensure we don't render off-screen.
draw_width = std::min(draw_width, win_width);
draw_height = std::min(draw_height, win_height);
// ensure divisibility by 4 to make it compatible with all the video encoders
draw_width = std::ceil(draw_width) - static_cast<int>(std::ceil(draw_width)) % 4;
draw_height = std::ceil(draw_height) - static_cast<int>(std::ceil(draw_height)) % 4;
m_target_rectangle.left = static_cast<int>(std::round(win_width / 2.0 - draw_width / 2.0));
m_target_rectangle.top = static_cast<int>(std::round(win_height / 2.0 - draw_height / 2.0));
m_target_rectangle.right = m_target_rectangle.left + static_cast<int>(draw_width);
m_target_rectangle.bottom = m_target_rectangle.top + static_cast<int>(draw_height);
}
void Renderer::SetWindowSize(int width, int height)
{
std::tie(width, height) = CalculateOutputDimensions(width, height);
// Track the last values of width/height to avoid sending a window resize event every frame.
if (width != m_last_window_request_width || height != m_last_window_request_height)
{
m_last_window_request_width = width;
m_last_window_request_height = height;
Host_RequestRenderWindowSize(width, height);
}
}
std::tuple<int, int> Renderer::CalculateOutputDimensions(int width, int height)
{
width = std::max(width, 1);
height = std::max(height, 1);
float scaled_width, scaled_height;
std::tie(scaled_width, scaled_height) = ScaleToDisplayAspectRatio(width, height);
if (g_ActiveConfig.bCrop)
{
// Force 4:3 or 16:9 by cropping the image.
float current_aspect = scaled_width / scaled_height;
float expected_aspect = (g_ActiveConfig.aspect_mode == AspectMode::AnalogWide ||
(g_ActiveConfig.aspect_mode != AspectMode::Analog && m_aspect_wide)) ?
(16.0f / 9.0f) :
(4.0f / 3.0f);
if (current_aspect > expected_aspect)
{
// keep height, crop width
scaled_width = scaled_height * expected_aspect;
}
else
{
// keep width, crop height
scaled_height = scaled_width / expected_aspect;
}
}
width = static_cast<int>(std::ceil(scaled_width));
height = static_cast<int>(std::ceil(scaled_height));
// UpdateDrawRectangle() makes sure that the rendered image is divisible by four for video
// encoders, so do that here too to match it
width -= width % 4;
height -= height % 4;
return std::make_tuple(width, height);
}
void Renderer::CheckFifoRecording()
{
bool wasRecording = g_bRecordFifoData;
g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording();
if (g_bRecordFifoData)
{
if (!wasRecording)
{
RecordVideoMemory();
}
FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase,
CommandProcessor::fifo.CPEnd);
}
}
void Renderer::RecordVideoMemory()
{
const u32* bpmem_ptr = reinterpret_cast<const u32*>(&bpmem);
u32 cpmem[256] = {};
// The FIFO recording format splits XF memory into xfmem and xfregs; follow
// that split here.
const u32* xfmem_ptr = reinterpret_cast<const u32*>(&xfmem);
const u32* xfregs_ptr = reinterpret_cast<const u32*>(&xfmem) + FifoDataFile::XF_MEM_SIZE;
u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE;
FillCPMemoryArray(cpmem);
FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size,
texMem);
}
void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc,
u64 ticks)
{
// Heuristic to detect if a GameCube game is in 16:9 anamorphic widescreen mode.
if (!SConfig::GetInstance().bWii)
{
size_t flush_count_4_3, flush_count_anamorphic;
std::tie(flush_count_4_3, flush_count_anamorphic) =
g_vertex_manager->ResetFlushAspectRatioCount();
size_t flush_total = flush_count_4_3 + flush_count_anamorphic;
// Modify the threshold based on which aspect ratio we're already using: if
// the game's in 4:3, it probably won't switch to anamorphic, and vice-versa.
if (m_aspect_wide)
m_aspect_wide = !(flush_count_4_3 > 0.75 * flush_total);
else
m_aspect_wide = flush_count_anamorphic > 0.75 * flush_total;
}
// Ensure the last frame was written to the dump.
// This is required even if frame dumping has stopped, since the frame dump is one frame
// behind the renderer.
FlushFrameDump();
if (xfbAddr && fbWidth && fbStride && fbHeight)
{
constexpr int force_safe_texture_cache_hash = 0;
// Get the current XFB from texture cache
auto* xfb_entry = g_texture_cache->GetXFBTexture(
xfbAddr, fbStride, fbHeight, TextureFormat::XFB, force_safe_texture_cache_hash);
if (xfb_entry && xfb_entry->id != m_last_xfb_id)
{
const TextureConfig& texture_config = xfb_entry->texture->GetConfig();
m_last_xfb_texture = xfb_entry->texture.get();
m_last_xfb_id = xfb_entry->id;
m_last_xfb_ticks = ticks;
auto xfb_rect = texture_config.GetRect();
// It's possible that the returned XFB texture is native resolution
// even when we're rendering at higher than native resolution
// if the XFB was was loaded entirely from console memory.
// If so, adjust the rectangle by native resolution instead of scaled resolution.
const u32 native_stride_width_difference = fbStride - fbWidth;
if (texture_config.width == xfb_entry->native_width)
xfb_rect.right -= native_stride_width_difference;
else
xfb_rect.right -= EFBToScaledX(native_stride_width_difference);
m_last_xfb_region = xfb_rect;
// TODO: merge more generic parts into VideoCommon
{
std::lock_guard<std::mutex> guard(m_swap_mutex);
g_renderer->SwapImpl(xfb_entry->texture.get(), xfb_rect, ticks);
}
// Update the window size based on the frame that was just rendered.
// Due to depending on guest state, we need to call this every frame.
SetWindowSize(texture_config.width, texture_config.height);
m_fps_counter.Update();
if (IsFrameDumping())
DumpCurrentFrame();
frameCount++;
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
// Begin new frame
// Set default viewport and scissor, for the clear to work correctly
// New frame
stats.ResetFrame();
g_shader_cache->RetrieveAsyncShaders();
// We invalidate the pipeline object at the start of the frame.
// This is for the rare case where only a single pipeline configuration is used,
// and hybrid ubershaders have compiled the specialized shader, but without any
// state changes the specialized shader will not take over.
g_vertex_manager->InvalidatePipelineObject();
Core::Callback_VideoCopiedToXFB(true);
}
// Update our last xfb values
m_last_xfb_width = (fbStride < 1 || fbStride > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fbStride;
m_last_xfb_height = (fbHeight < 1 || fbHeight > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fbHeight;
}
}
bool Renderer::IsFrameDumping()
{
if (m_screenshot_request.IsSet())
return true;
if (SConfig::GetInstance().m_DumpFrames)
return true;
return false;
}
void Renderer::DumpCurrentFrame()
{
// Scale/render to frame dump texture.
RenderFrameDump();
// Queue a readback for the next frame.
QueueFrameDumpReadback();
}
void Renderer::RenderFrameDump()
{
int target_width, target_height;
if (!g_ActiveConfig.bInternalResolutionFrameDumps && !IsHeadless())
{
auto target_rect = GetTargetRectangle();
target_width = target_rect.GetWidth();
target_height = target_rect.GetHeight();
}
else
{
std::tie(target_width, target_height) = CalculateOutputDimensions(
m_last_xfb_texture->GetConfig().width, m_last_xfb_texture->GetConfig().height);
}
// Ensure framebuffer exists (we lazily allocate it in case frame dumping isn't used).
// Or, resize texture if it isn't large enough to accommodate the current frame.
if (!m_frame_dump_render_texture ||
m_frame_dump_render_texture->GetConfig().width != static_cast<u32>(target_width) ||
m_frame_dump_render_texture->GetConfig().height != static_cast<u32>(target_height))
{
// Recreate texture objects. Release before creating so we don't temporarily use twice the RAM.
TextureConfig config(target_width, target_height, 1, 1, 1, AbstractTextureFormat::RGBA8, true);
m_frame_dump_render_texture.reset();
m_frame_dump_render_texture = CreateTexture(config);
ASSERT(m_frame_dump_render_texture);
}
// Scaling is likely to occur here, but if possible, do a bit-for-bit copy.
if (m_last_xfb_region.GetWidth() != target_width ||
m_last_xfb_region.GetHeight() != target_height)
{
m_frame_dump_render_texture->ScaleRectangleFromTexture(
m_last_xfb_texture, m_last_xfb_region, EFBRectangle{0, 0, target_width, target_height});
}
else
{
m_frame_dump_render_texture->CopyRectangleFromTexture(
m_last_xfb_texture, m_last_xfb_region, 0, 0,
EFBRectangle{0, 0, target_width, target_height}, 0, 0);
}
}
void Renderer::QueueFrameDumpReadback()
{
// Index 0 was just sent to AVI dump. Swap with the second texture.
if (m_frame_dump_readback_textures[0])
std::swap(m_frame_dump_readback_textures[0], m_frame_dump_readback_textures[1]);
std::unique_ptr<AbstractStagingTexture>& rbtex = m_frame_dump_readback_textures[0];
if (!rbtex || rbtex->GetConfig() != m_frame_dump_render_texture->GetConfig())
{
rbtex = CreateStagingTexture(StagingTextureType::Readback,
m_frame_dump_render_texture->GetConfig());
}
m_last_frame_state = AVIDump::FetchState(m_last_xfb_ticks);
m_last_frame_exported = true;
rbtex->CopyFromTexture(m_frame_dump_render_texture.get(), 0, 0);
}
void Renderer::FlushFrameDump()
{
if (!m_last_frame_exported)
return;
// Ensure the previously-queued frame was encoded.
FinishFrameData();
// Queue encoding of the last frame dumped.
std::unique_ptr<AbstractStagingTexture>& rbtex = m_frame_dump_readback_textures[0];
rbtex->Flush();
if (rbtex->Map())
{
DumpFrameData(reinterpret_cast<u8*>(rbtex->GetMappedPointer()), rbtex->GetConfig().width,
rbtex->GetConfig().height, static_cast<int>(rbtex->GetMappedStride()),
m_last_frame_state);
rbtex->Unmap();
}
m_last_frame_exported = false;
// Shutdown frame dumping if it is no longer active.
if (!IsFrameDumping())
ShutdownFrameDumping();
}
void Renderer::ShutdownFrameDumping()
{
// Ensure the last queued readback has been sent to the encoder.
FlushFrameDump();
if (!m_frame_dump_thread_running.IsSet())
return;
// Ensure previous frame has been encoded.
FinishFrameData();
// Wake thread up, and wait for it to exit.
m_frame_dump_thread_running.Clear();
m_frame_dump_start.Set();
if (m_frame_dump_thread.joinable())
m_frame_dump_thread.join();
m_frame_dump_render_texture.reset();
for (auto& tex : m_frame_dump_readback_textures)
tex.reset();
}
void Renderer::DumpFrameData(const u8* data, int w, int h, int stride, const AVIDump::Frame& state)
{
m_frame_dump_config = FrameDumpConfig{data, w, h, stride, state};
if (!m_frame_dump_thread_running.IsSet())
{
if (m_frame_dump_thread.joinable())
m_frame_dump_thread.join();
m_frame_dump_thread_running.Set();
m_frame_dump_thread = std::thread(&Renderer::RunFrameDumps, this);
}
// Wake worker thread up.
m_frame_dump_start.Set();
m_frame_dump_frame_running = true;
}
void Renderer::FinishFrameData()
{
if (!m_frame_dump_frame_running)
return;
m_frame_dump_done.Wait();
m_frame_dump_frame_running = false;
}
void Renderer::RunFrameDumps()
{
Common::SetCurrentThreadName("FrameDumping");
bool dump_to_avi = !g_ActiveConfig.bDumpFramesAsImages;
bool frame_dump_started = false;
// If Dolphin was compiled without libav, we only support dumping to images.
#if !defined(HAVE_FFMPEG)
if (dump_to_avi)
{
WARN_LOG(VIDEO, "AVI frame dump requested, but Dolphin was compiled without libav. "
"Frame dump will be saved as images instead.");
dump_to_avi = false;
}
#endif
while (true)
{
m_frame_dump_start.Wait();
if (!m_frame_dump_thread_running.IsSet())
break;
auto config = m_frame_dump_config;
// Save screenshot
if (m_screenshot_request.TestAndClear())
{
std::lock_guard<std::mutex> lk(m_screenshot_lock);
if (TextureToPng(config.data, config.stride, m_screenshot_name, config.width, config.height,
false))
OSD::AddMessage("Screenshot saved to " + m_screenshot_name);
// Reset settings
m_screenshot_name.clear();
m_screenshot_completed.Set();
}
if (SConfig::GetInstance().m_DumpFrames)
{
if (!frame_dump_started)
{
if (dump_to_avi)
frame_dump_started = StartFrameDumpToAVI(config);
else
frame_dump_started = StartFrameDumpToImage(config);
// Stop frame dumping if we fail to start.
if (!frame_dump_started)
SConfig::GetInstance().m_DumpFrames = false;
}
// If we failed to start frame dumping, don't write a frame.
if (frame_dump_started)
{
if (dump_to_avi)
DumpFrameToAVI(config);
else
DumpFrameToImage(config);
}
}
m_frame_dump_done.Set();
}
if (frame_dump_started)
{
// No additional cleanup is needed when dumping to images.
if (dump_to_avi)
StopFrameDumpToAVI();
}
}
#if defined(HAVE_FFMPEG)
bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config)
{
return AVIDump::Start(config.width, config.height);
}
void Renderer::DumpFrameToAVI(const FrameDumpConfig& config)
{
AVIDump::AddFrame(config.data, config.width, config.height, config.stride, config.state);
}
void Renderer::StopFrameDumpToAVI()
{
AVIDump::Stop();
}
#else
bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config)
{
return false;
}
void Renderer::DumpFrameToAVI(const FrameDumpConfig& config)
{
}
void Renderer::StopFrameDumpToAVI()
{
}
#endif // defined(HAVE_FFMPEG)
std::string Renderer::GetFrameDumpNextImageFileName() const
{
return StringFromFormat("%sframedump_%u.png", File::GetUserPath(D_DUMPFRAMES_IDX).c_str(),
m_frame_dump_image_counter);
}
bool Renderer::StartFrameDumpToImage(const FrameDumpConfig& config)
{
m_frame_dump_image_counter = 1;
if (!SConfig::GetInstance().m_DumpFramesSilent)
{
// Only check for the presence of the first image to confirm overwriting.
// A previous run will always have at least one image, and it's safe to assume that if the user
// has allowed the first image to be overwritten, this will apply any remaining images as well.
std::string filename = GetFrameDumpNextImageFileName();
if (File::Exists(filename))
{
if (!AskYesNoT("Frame dump image(s) '%s' already exists. Overwrite?", filename.c_str()))
return false;
}
}
return true;
}
void Renderer::DumpFrameToImage(const FrameDumpConfig& config)
{
std::string filename = GetFrameDumpNextImageFileName();
TextureToPng(config.data, config.stride, filename, config.width, config.height, false);
m_frame_dump_image_counter++;
}
bool Renderer::UseVertexDepthRange() const
{
// We can't compute the depth range in the vertex shader if we don't support depth clamp.
if (!g_ActiveConfig.backend_info.bSupportsDepthClamp)
return false;
// We need a full depth range if a ztexture is used.
if (bpmem.ztex2.type != ZTEXTURE_DISABLE && !bpmem.zcontrol.early_ztest)
return true;
// If an inverted depth range is unsupported, we also need to check if the range is inverted.
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange && xfmem.viewport.zRange < 0.0f)
return true;
// If an oversized depth range or a ztexture is used, we need to calculate the depth range
// in the vertex shader.
return fabs(xfmem.viewport.zRange) > 16777215.0f || fabs(xfmem.viewport.farZ) > 16777215.0f;
}
std::unique_ptr<VideoCommon::AsyncShaderCompiler> Renderer::CreateAsyncShaderCompiler()
{
return std::make_unique<VideoCommon::AsyncShaderCompiler>();
}
void Renderer::ShowOSDMessage(OSDMessage message)
{
m_osd_message = static_cast<s32>(message);
}