vsc-material-theme/test/source.cpp
2017-05-16 21:28:04 +02:00

1582 lines
No EOL
56 KiB
C++
Vendored

#include "ccv.h"
#include "ccv_internal.h"
#include <sys/time.h>
#ifdef HAVE_GSL
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#endif
#ifdef USE_OPENMP
#include <omp.h>
#endif
const ;
finitario crear_finitario(info_t i) {
finitario nuevo = new rep_finitario;
nuevo->dato = i;
nuevo->primerio = NULL;
return nuevo;
}
const ccv_bbf_param_t ccv_bbf_default_params = {
.interval = 5,
.min_neighbors = 2,
.accurate = 1,
.flags = 0,
.size = {
24,
24,
},
};
#define _ccv_width_padding(x) (((x) + 3) & -4)
static inline int _ccv_run_bbf_feature(ccv_bbf_feature_t *feature, int *step, unsigned char **u8)
{
#define pf_at(i) (*(u8[feature->pz[i]] + feature->px[i] + feature->py[i] * step[feature->pz[i]]))
#define nf_at(i) (*(u8[feature->nz[i]] + feature->nx[i] + feature->ny[i] * step[feature->nz[i]]))
unsigned char pmin = pf_at(0), nmax = nf_at(0);
/* check if every point in P > every point in N, and take a shortcut */
if (pmin <= nmax)
return 0;
int i;
for (i = 1; i < feature->size; i++)
{
if (feature->pz[i] >= 0)
{
int p = pf_at(i);
if (p < pmin)
{
if (p <= nmax)
return 0;
pmin = p;
}
}
if (feature->nz[i] >= 0)
{
int n = nf_at(i);
if (n > nmax)
{
if (pmin <= n)
return 0;
nmax = n;
}
}
}
#undef pf_at
#undef nf_at
return 1;
}
static int _ccv_read_bbf_stage_classifier(const char *file, ccv_bbf_stage_classifier_t *classifier)
{
FILE *r = fopen(file, "r");
if (r == 0)
return -1;
int stat = 0;
stat |= fscanf(r, "%d", &classifier->count);
union {
float fl;
int i;
} fli;
stat |= fscanf(r, "%d", &fli.i);
classifier->threshold = fli.fl;
classifier->feature = (ccv_bbf_feature_t *)ccmalloc(classifier->count * sizeof(ccv_bbf_feature_t));
classifier->alpha = (float *)ccmalloc(classifier->count * 2 * sizeof(float));
int i, j;
for (i = 0; i < classifier->count; i++)
{
stat |= fscanf(r, "%d", &classifier->feature[i].size);
for (j = 0; j < classifier->feature[i].size; j++)
{
stat |= fscanf(r, "%d %d %d", &classifier->feature[i].px[j], &classifier->feature[i].py[j], &classifier->feature[i].pz[j]);
stat |= fscanf(r, "%d %d %d", &classifier->feature[i].nx[j], &classifier->feature[i].ny[j], &classifier->feature[i].nz[j]);
}
union {
float fl;
int i;
} flia, flib;
stat |= fscanf(r, "%d %d", &flia.i, &flib.i);
classifier->alpha[i * 2] = flia.fl;
classifier->alpha[i * 2 + 1] = flib.fl;
}
fclose(r);
return 0;
}
#ifdef HAVE_GSL
static unsigned int _ccv_bbf_time_measure()
{
struct timeval tv;
gettimeofday(&tv, 0);
return tv.tv_sec * 1000000 + tv.tv_usec;
}
#define less_than(a, b, aux) ((a) < (b))
CCV_IMPLEMENT_QSORT(_ccv_sort_32f, float, less_than)
#undef less_than
static void _ccv_bbf_eval_data(ccv_bbf_stage_classifier_t *classifier, unsigned char **posdata, int posnum, unsigned char **negdata, int negnum, ccv_size_t size, float *peval, float *neval)
{
int i, j;
int steps[] = {_ccv_width_padding(size.width),
_ccv_width_padding(size.width >> 1),
_ccv_width_padding(size.width >> 2)};
int isizs0 = steps[0] * size.height;
int isizs01 = isizs0 + steps[1] * (size.height >> 1);
for (i = 0; i < posnum; i++)
{
unsigned char *u8[] = {posdata[i], posdata[i] + isizs0, posdata[i] + isizs01};
float sum = 0;
float *alpha = classifier->alpha;
ccv_bbf_feature_t *feature = classifier->feature;
for (j = 0; j < classifier->count; ++j, alpha += 2, ++feature)
sum += alpha[_ccv_run_bbf_feature(feature, steps, u8)];
peval[i] = sum;
}
for (i = 0; i < negnum; i++)
{
unsigned char *u8[] = {negdata[i], negdata[i] + isizs0, negdata[i] + isizs01};
float sum = 0;
float *alpha = classifier->alpha;
ccv_bbf_feature_t *feature = classifier->feature;
for (j = 0; j < classifier->count; ++j, alpha += 2, ++feature)
sum += alpha[_ccv_run_bbf_feature(feature, steps, u8)];
neval[i] = sum;
}
}
static int _ccv_prune_positive_data(ccv_bbf_classifier_cascade_t *cascade, unsigned char **posdata, int posnum, ccv_size_t size)
{
float *peval = (float *)ccmalloc(posnum * sizeof(float));
int i, j, k, rpos = posnum;
for (i = 0; i < cascade->count; i++)
{
_ccv_bbf_eval_data(cascade->stage_classifier + i, posdata, rpos, 0, 0, size, peval, 0);
k = 0;
for (j = 0; j < rpos; j++)
if (peval[j] >= cascade->stage_classifier[i].threshold)
{
posdata[k] = posdata[j];
++k;
}
else
{
ccfree(posdata[j]);
}
rpos = k;
}
ccfree(peval);
return rpos;
}
static int _ccv_prepare_background_data(ccv_bbf_classifier_cascade_t *cascade, char **bgfiles, int bgnum, unsigned char **negdata, int negnum)
{
int t, i, j, k, q;
int negperbg;
int negtotal = 0;
int steps[] = {_ccv_width_padding(cascade->size.width),
_ccv_width_padding(cascade->size.width >> 1),
_ccv_width_padding(cascade->size.width >> 2)};
int isizs0 = steps[0] * cascade->size.height;
int isizs1 = steps[1] * (cascade->size.height >> 1);
int isizs2 = steps[2] * (cascade->size.height >> 2);
int *idcheck = (int *)ccmalloc(negnum * sizeof(int));
gsl_rng_env_setup();
gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
gsl_rng_set(rng, (unsigned long int)idcheck);
ccv_size_t imgsz = cascade->size;
int rneg = negtotal;
for (t = 0; negtotal < negnum; t++)
{
PRINT(CCV_CLI_INFO, "preparing negative data ... 0%%");
for (i = 0; i < bgnum; i++)
{
negperbg = (t < 2) ? (negnum - negtotal) / (bgnum - i) + 1 : negnum - negtotal;
ccv_dense_matrix_t *image = 0;
ccv_read(bgfiles[i], &image, CCV_IO_GRAY | CCV_IO_ANY_FILE);
assert((image->type & CCV_C1) && (image->type & CCV_8U));
if (image == 0)
{
PRINT(CCV_CLI_ERROR, "\n%s file corrupted\n", bgfiles[i]);
continue;
}
if (t % 2 != 0)
ccv_flip(image, 0, 0, CCV_FLIP_X);
if (t % 4 >= 2)
ccv_flip(image, 0, 0, CCV_FLIP_Y);
ccv_bbf_param_t params = {.interval = 3, .min_neighbors = 0, .accurate = 1, .flags = 0, .size = cascade->size};
ccv_array_t *detected = ccv_bbf_detect_objects(image, &cascade, 1, params);
memset(idcheck, 0, ccv_min(detected->rnum, negperbg) * sizeof(int));
for (j = 0; j < ccv_min(detected->rnum, negperbg); j++)
{
int r = gsl_rng_uniform_int(rng, detected->rnum);
int flag = 1;
ccv_rect_t *rect = (ccv_rect_t *)ccv_array_get(detected, r);
while (flag)
{
flag = 0;
for (k = 0; k < j; k++)
if (r == idcheck[k])
{
flag = 1;
r = gsl_rng_uniform_int(rng, detected->rnum);
break;
}
rect = (ccv_rect_t *)ccv_array_get(detected, r);
if ((rect->x < 0) || (rect->y < 0) || (rect->width + rect->x > image->cols) || (rect->height + rect->y > image->rows))
{
flag = 1;
r = gsl_rng_uniform_int(rng, detected->rnum);
}
}
idcheck[j] = r;
ccv_dense_matrix_t *temp = 0;
ccv_dense_matrix_t *imgs0 = 0;
ccv_dense_matrix_t *imgs1 = 0;
ccv_dense_matrix_t *imgs2 = 0;
ccv_slice(image, (ccv_matrix_t **)&temp, 0, rect->y, rect->x, rect->height, rect->width);
ccv_resample(temp, &imgs0, 0, imgsz.height, imgsz.width, CCV_INTER_AREA);
assert(imgs0->step == steps[0]);
ccv_matrix_free(temp);
ccv_sample_down(imgs0, &imgs1, 0, 0, 0);
assert(imgs1->step == steps[1]);
ccv_sample_down(imgs1, &imgs2, 0, 0, 0);
assert(imgs2->step == steps[2]);
negdata[negtotal] = (unsigned char *)ccmalloc(isizs0 + isizs1 + isizs2);
unsigned char *u8s0 = negdata[negtotal];
unsigned char *u8s1 = negdata[negtotal] + isizs0;
unsigned char *u8s2 = negdata[negtotal] + isizs0 + isizs1;
unsigned char *u8[] = {u8s0, u8s1, u8s2};
memcpy(u8s0, imgs0->data.u8, imgs0->rows * imgs0->step);
ccv_matrix_free(imgs0);
memcpy(u8s1, imgs1->data.u8, imgs1->rows * imgs1->step);
ccv_matrix_free(imgs1);
memcpy(u8s2, imgs2->data.u8, imgs2->rows * imgs2->step);
ccv_matrix_free(imgs2);
flag = 1;
ccv_bbf_stage_classifier_t *classifier = cascade->stage_classifier;
for (k = 0; k < cascade->count; ++k, ++classifier)
{
float sum = 0;
float *alpha = classifier->alpha;
ccv_bbf_feature_t *feature = classifier->feature;
for (q = 0; q < classifier->count; ++q, alpha += 2, ++feature)
sum += alpha[_ccv_run_bbf_feature(feature, steps, u8)];
if (sum < classifier->threshold)
{
flag = 0;
break;
}
}
if (!flag)
ccfree(negdata[negtotal]);
else
{
++negtotal;
if (negtotal >= negnum)
break;
}
}
ccv_array_free(detected);
ccv_matrix_free(image);
ccv_drain_cache();
PRINT(CCV_CLI_INFO, "\rpreparing negative data ... %2d%%", 100 * negtotal / negnum);
fflush(0);
if (negtotal >= negnum)
break;
}
if (rneg == negtotal)
break;
rneg = negtotal;
PRINT(CCV_CLI_INFO, "\nentering additional round %d\n", t + 1);
}
gsl_rng_free(rng);
ccfree(idcheck);
ccv_drain_cache();
PRINT(CCV_CLI_INFO, "\n");
return negtotal;
}
static void _ccv_prepare_positive_data(ccv_dense_matrix_t **posimg, unsigned char **posdata, ccv_size_t size, int posnum)
{
PRINT(CCV_CLI_INFO, "preparing positive data ... 0%%");
int i;
for (i = 0; i < posnum; i++)
{
ccv_dense_matrix_t *imgs0 = posimg[i];
ccv_dense_matrix_t *imgs1 = 0;
ccv_dense_matrix_t *imgs2 = 0;
assert((imgs0->type & CCV_C1) && (imgs0->type & CCV_8U) && imgs0->rows == size.height && imgs0->cols == size.width);
ccv_sample_down(imgs0, &imgs1, 0, 0, 0);
ccv_sample_down(imgs1, &imgs2, 0, 0, 0);
int isizs0 = imgs0->rows * imgs0->step;
int isizs1 = imgs1->rows * imgs1->step;
int isizs2 = imgs2->rows * imgs2->step;
posdata[i] = (unsigned char *)ccmalloc(isizs0 + isizs1 + isizs2);
memcpy(posdata[i], imgs0->data.u8, isizs0);
memcpy(posdata[i] + isizs0, imgs1->data.u8, isizs1);
memcpy(posdata[i] + isizs0 + isizs1, imgs2->data.u8, isizs2);
PRINT(CCV_CLI_INFO, "\rpreparing positive data ... %2d%%", 100 * (i + 1) / posnum);
fflush(0);
ccv_matrix_free(imgs1);
ccv_matrix_free(imgs2);
}
ccv_drain_cache();
PRINT(CCV_CLI_INFO, "\n");
}
typedef struct
{
double fitness;
int pk, nk;
int age;
double error;
ccv_bbf_feature_t feature;
} ccv_bbf_gene_t;
static inline void _ccv_bbf_genetic_fitness(ccv_bbf_gene_t *gene)
{
gene->fitness = (1 - gene->error) * exp(-0.01 * gene->age) * exp((gene->pk + gene->nk) * log(1.015));
}
static inline int _ccv_bbf_exist_gene_feature(ccv_bbf_gene_t *gene, int x, int y, int z)
{
int i;
for (i = 0; i < gene->pk; i++)
if (z == gene->feature.pz[i] && x == gene->feature.px[i] && y == gene->feature.py[i])
return 1;
for (i = 0; i < gene->nk; i++)
if (z == gene->feature.nz[i] && x == gene->feature.nx[i] && y == gene->feature.ny[i])
return 1;
return 0;
}
static inline void _ccv_bbf_randomize_gene(gsl_rng *rng, ccv_bbf_gene_t *gene, int *rows, int *cols)
{
int i;
do
{
gene->pk = gsl_rng_uniform_int(rng, CCV_BBF_POINT_MAX - 1) + 1;
gene->nk = gsl_rng_uniform_int(rng, CCV_BBF_POINT_MAX - 1) + 1;
} while (gene->pk + gene->nk < CCV_BBF_POINT_MIN); /* a hard restriction of at least 3 points have to be examed */
gene->feature.size = ccv_max(gene->pk, gene->nk);
gene->age = 0;
for (i = 0; i < CCV_BBF_POINT_MAX; i++)
{
gene->feature.pz[i] = -1;
gene->feature.nz[i] = -1;
}
int x, y, z;
for (i = 0; i < gene->pk; i++)
{
do
{
z = gsl_rng_uniform_int(rng, 3);
x = gsl_rng_uniform_int(rng, cols[z]);
y = gsl_rng_uniform_int(rng, rows[z]);
} while (_ccv_bbf_exist_gene_feature(gene, x, y, z));
gene->feature.pz[i] = z;
gene->feature.px[i] = x;
gene->feature.py[i] = y;
}
for (i = 0; i < gene->nk; i++)
{
do
{
z = gsl_rng_uniform_int(rng, 3);
x = gsl_rng_uniform_int(rng, cols[z]);
y = gsl_rng_uniform_int(rng, rows[z]);
} while (_ccv_bbf_exist_gene_feature(gene, x, y, z));
gene->feature.nz[i] = z;
gene->feature.nx[i] = x;
gene->feature.ny[i] = y;
}
}
static inline double _ccv_bbf_error_rate(ccv_bbf_feature_t *feature, unsigned char **posdata, int posnum, unsigned char **negdata, int negnum, ccv_size_t size, double *pw, double *nw)
{
int i;
int steps[] = {_ccv_width_padding(size.width),
_ccv_width_padding(size.width >> 1),
_ccv_width_padding(size.width >> 2)};
int isizs0 = steps[0] * size.height;
int isizs01 = isizs0 + steps[1] * (size.height >> 1);
double error = 0;
for (i = 0; i < posnum; i++)
{
unsigned char *u8[] = {posdata[i], posdata[i] + isizs0, posdata[i] + isizs01};
if (!_ccv_run_bbf_feature(feature, steps, u8))
error += pw[i];
}
for (i = 0; i < negnum; i++)
{
unsigned char *u8[] = {negdata[i], negdata[i] + isizs0, negdata[i] + isizs01};
if (_ccv_run_bbf_feature(feature, steps, u8))
error += nw[i];
}
return error;
}
#define less_than(fit1, fit2, aux) ((fit1).fitness >= (fit2).fitness)
static CCV_IMPLEMENT_QSORT(_ccv_bbf_genetic_qsort, ccv_bbf_gene_t, less_than)
#undef less_than
static ccv_bbf_feature_t _ccv_bbf_genetic_optimize(unsigned char **posdata, int posnum, unsigned char **negdata, int negnum, int ftnum, ccv_size_t size, double *pw, double *nw)
{
ccv_bbf_feature_t best;
/* seed (random method) */
gsl_rng_env_setup();
gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
union {
unsigned long int li;
double db;
} dbli;
dbli.db = pw[0] + nw[0];
gsl_rng_set(rng, dbli.li);
int i, j;
int pnum = ftnum * 100;
assert(pnum > 0);
ccv_bbf_gene_t *gene = (ccv_bbf_gene_t *)ccmalloc(pnum * sizeof(ccv_bbf_gene_t));
int rows[] = {size.height, size.height >> 1, size.height >> 2};
int cols[] = {size.width, size.width >> 1, size.width >> 2};
for (i = 0; i < pnum; i++)
_ccv_bbf_randomize_gene(rng, &gene[i], rows, cols);
unsigned int timer = _ccv_bbf_time_measure();
#ifdef USE_OPENMP
#pragma omp parallel for private(i) schedule(dynamic)
#endif
for (i = 0; i < pnum; i++)
gene[i].error = _ccv_bbf_error_rate(&gene[i].feature, posdata, posnum, negdata, negnum, size, pw, nw);
timer = _ccv_bbf_time_measure() - timer;
for (i = 0; i < pnum; i++)
_ccv_bbf_genetic_fitness(&gene[i]);
double best_err = 1;
int rnum = ftnum * 39; /* number of randomize */
int mnum = ftnum * 40; /* number of mutation */
int hnum = ftnum * 20; /* number of hybrid */
/* iteration stop crit : best no change in 40 iterations */
int it = 0, t;
for (t = 0; it < 40; ++it, ++t)
{
int min_id = 0;
double min_err = gene[0].error;
for (i = 1; i < pnum; i++)
if (gene[i].error < min_err)
{
min_id = i;
min_err = gene[i].error;
}
min_err = gene[min_id].error = _ccv_bbf_error_rate(&gene[min_id].feature, posdata, posnum, negdata, negnum, size, pw, nw);
if (min_err < best_err)
{
best_err = min_err;
memcpy(&best, &gene[min_id].feature, sizeof(best));
PRINT(CCV_CLI_INFO, "best bbf feature with error %f\n|-size: %d\n|-positive point: ", best_err, best.size);
for (i = 0; i < best.size; i++)
PRINT(CCV_CLI_INFO, "(%d %d %d), ", best.px[i], best.py[i], best.pz[i]);
PRINT(CCV_CLI_INFO, "\n|-negative point: ");
for (i = 0; i < best.size; i++)
PRINT(CCV_CLI_INFO, "(%d %d %d), ", best.nx[i], best.ny[i], best.nz[i]);
PRINT(CCV_CLI_INFO, "\n");
it = 0;
}
PRINT(CCV_CLI_INFO, "minimum error achieved in round %d(%d) : %f with %d ms\n", t, it, min_err, timer / 1000);
_ccv_bbf_genetic_qsort(gene, pnum, 0);
for (i = 0; i < ftnum; i++)
++gene[i].age;
for (i = ftnum; i < ftnum + mnum; i++)
{
int parent = gsl_rng_uniform_int(rng, ftnum);
memcpy(gene + i, gene + parent, sizeof(ccv_bbf_gene_t));
/* three mutation strategy : 1. add, 2. remove, 3. refine */
int pnm, pn = gsl_rng_uniform_int(rng, 2);
int *pnk[] = {&gene[i].pk, &gene[i].nk};
int *pnx[] = {gene[i].feature.px, gene[i].feature.nx};
int *pny[] = {gene[i].feature.py, gene[i].feature.ny};
int *pnz[] = {gene[i].feature.pz, gene[i].feature.nz};
int x, y, z;
int victim, decay = 1;
do
{
switch (gsl_rng_uniform_int(rng, 3))
{
case 0: /* add */
if (gene[i].pk == CCV_BBF_POINT_MAX && gene[i].nk == CCV_BBF_POINT_MAX)
break;
while (*pnk[pn] + 1 > CCV_BBF_POINT_MAX)
pn = gsl_rng_uniform_int(rng, 2);
do
{
z = gsl_rng_uniform_int(rng, 3);
x = gsl_rng_uniform_int(rng, cols[z]);
y = gsl_rng_uniform_int(rng, rows[z]);
} while (_ccv_bbf_exist_gene_feature(&gene[i], x, y, z));
pnz[pn][*pnk[pn]] = z;
pnx[pn][*pnk[pn]] = x;
pny[pn][*pnk[pn]] = y;
++(*pnk[pn]);
gene[i].feature.size = ccv_max(gene[i].pk, gene[i].nk);
decay = gene[i].age = 0;
break;
case 1: /* remove */
if (gene[i].pk + gene[i].nk <= CCV_BBF_POINT_MIN) /* at least 3 points have to be examed */
break;
while (*pnk[pn] - 1 <= 0) // || *pnk[pn] + *pnk[!pn] - 1 < CCV_BBF_POINT_MIN)
pn = gsl_rng_uniform_int(rng, 2);
victim = gsl_rng_uniform_int(rng, *pnk[pn]);
for (j = victim; j < *pnk[pn] - 1; j++)
{
pnz[pn][j] = pnz[pn][j + 1];
pnx[pn][j] = pnx[pn][j + 1];
pny[pn][j] = pny[pn][j + 1];
}
pnz[pn][*pnk[pn] - 1] = -1;
--(*pnk[pn]);
gene[i].feature.size = ccv_max(gene[i].pk, gene[i].nk);
decay = gene[i].age = 0;
break;
case 2: /* refine */
pnm = gsl_rng_uniform_int(rng, *pnk[pn]);
do
{
z = gsl_rng_uniform_int(rng, 3);
x = gsl_rng_uniform_int(rng, cols[z]);
y = gsl_rng_uniform_int(rng, rows[z]);
} while (_ccv_bbf_exist_gene_feature(&gene[i], x, y, z));
pnz[pn][pnm] = z;
pnx[pn][pnm] = x;
pny[pn][pnm] = y;
decay = gene[i].age = 0;
break;
}
} while (decay);
}
for (i = ftnum + mnum; i < ftnum + mnum + hnum; i++)
{
/* hybrid strategy: taking positive points from dad, negative points from mum */
int dad, mum;
do
{
dad = gsl_rng_uniform_int(rng, ftnum);
mum = gsl_rng_uniform_int(rng, ftnum);
} while (dad == mum || gene[dad].pk + gene[mum].nk < CCV_BBF_POINT_MIN); /* at least 3 points have to be examed */
for (j = 0; j < CCV_BBF_POINT_MAX; j++)
{
gene[i].feature.pz[j] = -1;
gene[i].feature.nz[j] = -1;
}
gene[i].pk = gene[dad].pk;
for (j = 0; j < gene[i].pk; j++)
{
gene[i].feature.pz[j] = gene[dad].feature.pz[j];
gene[i].feature.px[j] = gene[dad].feature.px[j];
gene[i].feature.py[j] = gene[dad].feature.py[j];
}
gene[i].nk = gene[mum].nk;
for (j = 0; j < gene[i].nk; j++)
{
gene[i].feature.nz[j] = gene[mum].feature.nz[j];
gene[i].feature.nx[j] = gene[mum].feature.nx[j];
gene[i].feature.ny[j] = gene[mum].feature.ny[j];
}
gene[i].feature.size = ccv_max(gene[i].pk, gene[i].nk);
gene[i].age = 0;
}
for (i = ftnum + mnum + hnum; i < ftnum + mnum + hnum + rnum; i++)
_ccv_bbf_randomize_gene(rng, &gene[i], rows, cols);
timer = _ccv_bbf_time_measure();
#ifdef USE_OPENMP
#pragma omp parallel for private(i) schedule(dynamic)
#endif
for (i = 0; i < pnum; i++)
gene[i].error = _ccv_bbf_error_rate(&gene[i].feature, posdata, posnum, negdata, negnum, size, pw, nw);
timer = _ccv_bbf_time_measure() - timer;
for (i = 0; i < pnum; i++)
_ccv_bbf_genetic_fitness(&gene[i]);
}
ccfree(gene);
gsl_rng_free(rng);
return best;
}
#define less_than(fit1, fit2, aux) ((fit1).error < (fit2).error)
static CCV_IMPLEMENT_QSORT(_ccv_bbf_best_qsort, ccv_bbf_gene_t, less_than)
#undef less_than
static ccv_bbf_gene_t _ccv_bbf_best_gene(ccv_bbf_gene_t *gene, int pnum, int point_min, unsigned char **posdata, int posnum, unsigned char **negdata, int negnum, ccv_size_t size, double *pw, double *nw)
{
int i;
unsigned int timer = _ccv_bbf_time_measure();
#ifdef USE_OPENMP
#pragma omp parallel for private(i) schedule(dynamic)
#endif
for (i = 0; i < pnum; i++)
gene[i].error = _ccv_bbf_error_rate(&gene[i].feature, posdata, posnum, negdata, negnum, size, pw, nw);
timer = _ccv_bbf_time_measure() - timer;
_ccv_bbf_best_qsort(gene, pnum, 0);
int min_id = 0;
double min_err = gene[0].error;
for (i = 0; i < pnum; i++)
if (gene[i].nk + gene[i].pk >= point_min)
{
min_id = i;
min_err = gene[i].error;
break;
}
PRINT(CCV_CLI_INFO, "local best bbf feature with error %f\n|-size: %d\n|-positive point: ", min_err, gene[min_id].feature.size);
for (i = 0; i < gene[min_id].feature.size; i++)
PRINT(CCV_CLI_INFO, "(%d %d %d), ", gene[min_id].feature.px[i], gene[min_id].feature.py[i], gene[min_id].feature.pz[i]);
PRINT(CCV_CLI_INFO, "\n|-negative point: ");
for (i = 0; i < gene[min_id].feature.size; i++)
PRINT(CCV_CLI_INFO, "(%d %d %d), ", gene[min_id].feature.nx[i], gene[min_id].feature.ny[i], gene[min_id].feature.nz[i]);
PRINT(CCV_CLI_INFO, "\nthe computation takes %d ms\n", timer / 1000);
return gene[min_id];
}
static ccv_bbf_feature_t _ccv_bbf_convex_optimize(unsigned char **posdata, int posnum, unsigned char **negdata, int negnum, ccv_bbf_feature_t *best_feature, ccv_size_t size, double *pw, double *nw)
{
ccv_bbf_gene_t best_gene;
/* seed (random method) */
gsl_rng_env_setup();
gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
union {
unsigned long int li;
double db;
} dbli;
dbli.db = pw[0] + nw[0];
gsl_rng_set(rng, dbli.li);
int i, j, k, q, p, g, t;
int rows[] = {size.height, size.height >> 1, size.height >> 2};
int cols[] = {size.width, size.width >> 1, size.width >> 2};
int pnum = rows[0] * cols[0] + rows[1] * cols[1] + rows[2] * cols[2];
ccv_bbf_gene_t *gene = (ccv_bbf_gene_t *)ccmalloc((pnum * (CCV_BBF_POINT_MAX * 2 + 1) * 2 + CCV_BBF_POINT_MAX * 2 + 1) * sizeof(ccv_bbf_gene_t));
if (best_feature == 0)
{
/* bootstrapping the best feature, start from two pixels, one for positive, one for negative
* the bootstrapping process go like this: first, it will assign a random pixel as positive
* and enumerate every possible pixel as negative, and pick the best one. Then, enumerate every
* possible pixel as positive, and pick the best one, until it converges */
memset(&best_gene, 0, sizeof(ccv_bbf_gene_t));
for (i = 0; i < CCV_BBF_POINT_MAX; i++)
best_gene.feature.pz[i] = best_gene.feature.nz[i] = -1;
best_gene.pk = 1;
best_gene.nk = 0;
best_gene.feature.size = 1;
best_gene.feature.pz[0] = gsl_rng_uniform_int(rng, 3);
best_gene.feature.px[0] = gsl_rng_uniform_int(rng, cols[best_gene.feature.pz[0]]);
best_gene.feature.py[0] = gsl_rng_uniform_int(rng, rows[best_gene.feature.pz[0]]);
for (t = 0;; ++t)
{
g = 0;
if (t % 2 == 0)
{
for (i = 0; i < 3; i++)
for (j = 0; j < cols[i]; j++)
for (k = 0; k < rows[i]; k++)
if (i != best_gene.feature.pz[0] || j != best_gene.feature.px[0] || k != best_gene.feature.py[0])
{
gene[g] = best_gene;
gene[g].pk = gene[g].nk = 1;
gene[g].feature.nz[0] = i;
gene[g].feature.nx[0] = j;
gene[g].feature.ny[0] = k;
g++;
}
}
else
{
for (i = 0; i < 3; i++)
for (j = 0; j < cols[i]; j++)
for (k = 0; k < rows[i]; k++)
if (i != best_gene.feature.nz[0] || j != best_gene.feature.nx[0] || k != best_gene.feature.ny[0])
{
gene[g] = best_gene;
gene[g].pk = gene[g].nk = 1;
gene[g].feature.pz[0] = i;
gene[g].feature.px[0] = j;
gene[g].feature.py[0] = k;
g++;
}
}
PRINT(CCV_CLI_INFO, "bootstrapping round : %d\n", t);
ccv_bbf_gene_t local_gene = _ccv_bbf_best_gene(gene, g, 2, posdata, posnum, negdata, negnum, size, pw, nw);
if (local_gene.error >= best_gene.error - 1e-10)
break;
best_gene = local_gene;
}
}
else
{
best_gene.feature = *best_feature;
best_gene.pk = best_gene.nk = best_gene.feature.size;
for (i = 0; i < CCV_BBF_POINT_MAX; i++)
if (best_feature->pz[i] == -1)
{
best_gene.pk = i;
break;
}
for (i = 0; i < CCV_BBF_POINT_MAX; i++)
if (best_feature->nz[i] == -1)
{
best_gene.nk = i;
break;
}
}
/* after bootstrapping, the float search technique will do the following permutations:
* a). add a new point to positive or negative
* b). remove a point from positive or negative
* c). move an existing point in positive or negative to another position
* the three rules applied exhaustively, no heuristic used. */
for (t = 0;; ++t)
{
g = 0;
for (i = 0; i < 3; i++)
for (j = 0; j < cols[i]; j++)
for (k = 0; k < rows[i]; k++)
if (!_ccv_bbf_exist_gene_feature(&best_gene, j, k, i))
{
/* add positive point */
if (best_gene.pk < CCV_BBF_POINT_MAX - 1)
{
gene[g] = best_gene;
gene[g].feature.pz[gene[g].pk] = i;
gene[g].feature.px[gene[g].pk] = j;
gene[g].feature.py[gene[g].pk] = k;
gene[g].pk++;
gene[g].feature.size = ccv_max(gene[g].pk, gene[g].nk);
g++;
}
/* add negative point */
if (best_gene.nk < CCV_BBF_POINT_MAX - 1)
{
gene[g] = best_gene;
gene[g].feature.nz[gene[g].nk] = i;
gene[g].feature.nx[gene[g].nk] = j;
gene[g].feature.ny[gene[g].nk] = k;
gene[g].nk++;
gene[g].feature.size = ccv_max(gene[g].pk, gene[g].nk);
g++;
}
/* refine positive point */
for (q = 0; q < best_gene.pk; q++)
{
gene[g] = best_gene;
gene[g].feature.pz[q] = i;
gene[g].feature.px[q] = j;
gene[g].feature.py[q] = k;
g++;
}
/* add positive point, remove negative point */
if (best_gene.pk < CCV_BBF_POINT_MAX - 1 && best_gene.nk > 1)
{
for (q = 0; q < best_gene.nk; q++)
{
gene[g] = best_gene;
gene[g].feature.pz[gene[g].pk] = i;
gene[g].feature.px[gene[g].pk] = j;
gene[g].feature.py[gene[g].pk] = k;
gene[g].pk++;
for (p = q; p < best_gene.nk - 1; p++)
{
gene[g].feature.nz[p] = gene[g].feature.nz[p + 1];
gene[g].feature.nx[p] = gene[g].feature.nx[p + 1];
gene[g].feature.ny[p] = gene[g].feature.ny[p + 1];
}
gene[g].feature.nz[gene[g].nk - 1] = -1;
gene[g].nk--;
gene[g].feature.size = ccv_max(gene[g].pk, gene[g].nk);
g++;
}
}
/* refine negative point */
for (q = 0; q < best_gene.nk; q++)
{
gene[g] = best_gene;
gene[g].feature.nz[q] = i;
gene[g].feature.nx[q] = j;
gene[g].feature.ny[q] = k;
g++;
}
/* add negative point, remove positive point */
if (best_gene.pk > 1 && best_gene.nk < CCV_BBF_POINT_MAX - 1)
{
for (q = 0; q < best_gene.pk; q++)
{
gene[g] = best_gene;
gene[g].feature.nz[gene[g].nk] = i;
gene[g].feature.nx[gene[g].nk] = j;
gene[g].feature.ny[gene[g].nk] = k;
gene[g].nk++;
for (p = q; p < best_gene.pk - 1; p++)
{
gene[g].feature.pz[p] = gene[g].feature.pz[p + 1];
gene[g].feature.px[p] = gene[g].feature.px[p + 1];
gene[g].feature.py[p] = gene[g].feature.py[p + 1];
}
gene[g].feature.pz[gene[g].pk - 1] = -1;
gene[g].pk--;
gene[g].feature.size = ccv_max(gene[g].pk, gene[g].nk);
g++;
}
}
}
if (best_gene.pk > 1)
for (q = 0; q < best_gene.pk; q++)
{
gene[g] = best_gene;
for (i = q; i < best_gene.pk - 1; i++)
{
gene[g].feature.pz[i] = gene[g].feature.pz[i + 1];
gene[g].feature.px[i] = gene[g].feature.px[i + 1];
gene[g].feature.py[i] = gene[g].feature.py[i + 1];
}
gene[g].feature.pz[gene[g].pk - 1] = -1;
gene[g].pk--;
gene[g].feature.size = ccv_max(gene[g].pk, gene[g].nk);
g++;
}
if (best_gene.nk > 1)
for (q = 0; q < best_gene.nk; q++)
{
gene[g] = best_gene;
for (i = q; i < best_gene.nk - 1; i++)
{
gene[g].feature.nz[i] = gene[g].feature.nz[i + 1];
gene[g].feature.nx[i] = gene[g].feature.nx[i + 1];
gene[g].feature.ny[i] = gene[g].feature.ny[i + 1];
}
gene[g].feature.nz[gene[g].nk - 1] = -1;
gene[g].nk--;
gene[g].feature.size = ccv_max(gene[g].pk, gene[g].nk);
g++;
}
gene[g] = best_gene;
g++;
PRINT(CCV_CLI_INFO, "float search round : %d\n", t);
ccv_bbf_gene_t local_gene = _ccv_bbf_best_gene(gene, g, CCV_BBF_POINT_MIN, posdata, posnum, negdata, negnum, size, pw, nw);
if (local_gene.error >= best_gene.error - 1e-10)
break;
best_gene = local_gene;
}
ccfree(gene);
gsl_rng_free(rng);
return best_gene.feature;
}
static int _ccv_write_bbf_stage_classifier(const char *file, ccv_bbf_stage_classifier_t *classifier)
{
FILE *w = fopen(file, "wb");
if (w == 0)
return -1;
fprintf(w, "%d\n", classifier->count);
union {
float fl;
int i;
} fli;
fli.fl = classifier->threshold;
fprintf(w, "%d\n", fli.i);
int i, j;
for (i = 0; i < classifier->count; i++)
{
fprintf(w, "%d\n", classifier->feature[i].size);
for (j = 0; j < classifier->feature[i].size; j++)
{
fprintf(w, "%d %d %d\n", classifier->feature[i].px[j], classifier->feature[i].py[j], classifier->feature[i].pz[j]);
fprintf(w, "%d %d %d\n", classifier->feature[i].nx[j], classifier->feature[i].ny[j], classifier->feature[i].nz[j]);
}
union {
float fl;
int i;
} flia, flib;
flia.fl = classifier->alpha[i * 2];
flib.fl = classifier->alpha[i * 2 + 1];
fprintf(w, "%d %d\n", flia.i, flib.i);
}
fclose(w);
return 0;
}
static int _ccv_read_background_data(const char *file, unsigned char **negdata, int *negnum, ccv_size_t size)
{
int stat = 0;
FILE *r = fopen(file, "rb");
if (r == 0)
return -1;
stat |= fread(negnum, sizeof(int), 1, r);
int i;
int isizs012 = _ccv_width_padding(size.width) * size.height +
_ccv_width_padding(size.width >> 1) * (size.height >> 1) +
_ccv_width_padding(size.width >> 2) * (size.height >> 2);
for (i = 0; i < *negnum; i++)
{
negdata[i] = (unsigned char *)ccmalloc(isizs012);
stat |= fread(negdata[i], 1, isizs012, r);
}
fclose(r);
return 0;
}
static int _ccv_write_background_data(const char *file, unsigned char **negdata, int negnum, ccv_size_t size)
{
FILE *w = fopen(file, "w");
if (w == 0)
return -1;
fwrite(&negnum, sizeof(int), 1, w);
int i;
int isizs012 = _ccv_width_padding(size.width) * size.height +
_ccv_width_padding(size.width >> 1) * (size.height >> 1) +
_ccv_width_padding(size.width >> 2) * (size.height >> 2);
for (i = 0; i < negnum; i++)
fwrite(negdata[i], 1, isizs012, w);
fclose(w);
return 0;
}
static int _ccv_resume_bbf_cascade_training_state(const char *file, int *i, int *k, int *bg, double *pw, double *nw, int posnum, int negnum)
{
int stat = 0;
FILE *r = fopen(file, "r");
if (r == 0)
return -1;
stat |= fscanf(r, "%d %d %d", i, k, bg);
int j;
union {
double db;
int i[2];
} dbi;
for (j = 0; j < posnum; j++)
{
stat |= fscanf(r, "%d %d", &dbi.i[0], &dbi.i[1]);
pw[j] = dbi.db;
}
for (j = 0; j < negnum; j++)
{
stat |= fscanf(r, "%d %d", &dbi.i[0], &dbi.i[1]);
nw[j] = dbi.db;
}
fclose(r);
return 0;
}
static int _ccv_save_bbf_cacade_training_state(const char *file, int i, int k, int bg, double *pw, double *nw, int posnum, int negnum)
{
FILE *w = fopen(file, "w");
if (w == 0)
return -1;
fprintf(w, "%d %d %d\n", i, k, bg);
int j;
union {
double db;
int i[2];
} dbi;
for (j = 0; j < posnum; ++j)
{
dbi.db = pw[j];
fprintf(w, "%d %d ", dbi.i[0], dbi.i[1]);
}
fprintf(w, "\n");
for (j = 0; j < negnum; ++j)
{
dbi.db = nw[j];
fprintf(w, "%d %d ", dbi.i[0], dbi.i[1]);
}
fprintf(w, "\n");
fclose(w);
return 0;
}
void ccv_bbf_classifier_cascade_new(ccv_dense_matrix_t **posimg, int posnum, char **bgfiles, int bgnum, int negnum, ccv_size_t size, const char *dir, ccv_bbf_new_param_t params)
{
int i, j, k;
/* allocate memory for usage */
ccv_bbf_classifier_cascade_t *cascade = (ccv_bbf_classifier_cascade_t *)ccmalloc(sizeof(ccv_bbf_classifier_cascade_t));
cascade->count = 0;
cascade->size = size;
cascade->stage_classifier = (ccv_bbf_stage_classifier_t *)ccmalloc(sizeof(ccv_bbf_stage_classifier_t));
unsigned char **posdata = (unsigned char **)ccmalloc(posnum * sizeof(unsigned char *));
unsigned char **negdata = (unsigned char **)ccmalloc(negnum * sizeof(unsigned char *));
double *pw = (double *)ccmalloc(posnum * sizeof(double));
double *nw = (double *)ccmalloc(negnum * sizeof(double));
float *peval = (float *)ccmalloc(posnum * sizeof(float));
float *neval = (float *)ccmalloc(negnum * sizeof(float));
double inv_balance_k = 1. / params.balance_k;
/* balance factor k, and weighted with 0.01 */
params.balance_k *= 0.01;
inv_balance_k *= 0.01;
int steps[] = {_ccv_width_padding(cascade->size.width),
_ccv_width_padding(cascade->size.width >> 1),
_ccv_width_padding(cascade->size.width >> 2)};
int isizs0 = steps[0] * cascade->size.height;
int isizs01 = isizs0 + steps[1] * (cascade->size.height >> 1);
i = 0;
k = 0;
int bg = 0;
int cacheK = 10;
/* state resume code */
char buf[1024];
sprintf(buf, "%s/stat.txt", dir);
_ccv_resume_bbf_cascade_training_state(buf, &i, &k, &bg, pw, nw, posnum, negnum);
if (i > 0)
{
cascade->count = i;
ccfree(cascade->stage_classifier);
cascade->stage_classifier = (ccv_bbf_stage_classifier_t *)ccmalloc(i * sizeof(ccv_bbf_stage_classifier_t));
for (j = 0; j < i; j++)
{
sprintf(buf, "%s/stage-%d.txt", dir, j);
_ccv_read_bbf_stage_classifier(buf, &cascade->stage_classifier[j]);
}
}
if (k > 0)
cacheK = k;
int rpos, rneg = 0;
if (bg)
{
sprintf(buf, "%s/negs.txt", dir);
_ccv_read_background_data(buf, negdata, &rneg, cascade->size);
}
for (; i < params.layer; i++)
{
if (!bg)
{
rneg = _ccv_prepare_background_data(cascade, bgfiles, bgnum, negdata, negnum);
/* save state of background data */
sprintf(buf, "%s/negs.txt", dir);
_ccv_write_background_data(buf, negdata, rneg, cascade->size);
bg = 1;
}
double totalw;
/* save state of cascade : level, weight etc. */
sprintf(buf, "%s/stat.txt", dir);
_ccv_save_bbf_cacade_training_state(buf, i, k, bg, pw, nw, posnum, negnum);
ccv_bbf_stage_classifier_t classifier;
if (k > 0)
{
/* resume state of classifier */
sprintf(buf, "%s/stage-%d.txt", dir, i);
_ccv_read_bbf_stage_classifier(buf, &classifier);
}
else
{
/* initialize classifier */
for (j = 0; j < posnum; j++)
pw[j] = params.balance_k;
for (j = 0; j < rneg; j++)
nw[j] = inv_balance_k;
classifier.count = k;
classifier.threshold = 0;
classifier.feature = (ccv_bbf_feature_t *)ccmalloc(cacheK * sizeof(ccv_bbf_feature_t));
classifier.alpha = (float *)ccmalloc(cacheK * 2 * sizeof(float));
}
_ccv_prepare_positive_data(posimg, posdata, cascade->size, posnum);
rpos = _ccv_prune_positive_data(cascade, posdata, posnum, cascade->size);
PRINT(CCV_CLI_INFO, "%d postivie data and %d negative data in training\n", rpos, rneg);
/* reweight to 1.00 */
totalw = 0;
for (j = 0; j < rpos; j++)
totalw += pw[j];
for (j = 0; j < rneg; j++)
totalw += nw[j];
for (j = 0; j < rpos; j++)
pw[j] = pw[j] / totalw;
for (j = 0; j < rneg; j++)
nw[j] = nw[j] / totalw;
for (;; k++)
{
/* get overall true-positive, false-positive rate and threshold */
double tp = 0, fp = 0, etp = 0, efp = 0;
_ccv_bbf_eval_data(&classifier, posdata, rpos, negdata, rneg, cascade->size, peval, neval);
_ccv_sort_32f(peval, rpos, 0);
classifier.threshold = peval[(int)((1. - params.pos_crit) * rpos)] - 1e-6;
for (j = 0; j < rpos; j++)
{
if (peval[j] >= 0)
++tp;
if (peval[j] >= classifier.threshold)
++etp;
}
tp /= rpos;
etp /= rpos;
for (j = 0; j < rneg; j++)
{
if (neval[j] >= 0)
++fp;
if (neval[j] >= classifier.threshold)
++efp;
}
fp /= rneg;
efp /= rneg;
PRINT(CCV_CLI_INFO, "stage classifier real TP rate : %f, FP rate : %f\n", tp, fp);
PRINT(CCV_CLI_INFO, "stage classifier TP rate : %f, FP rate : %f at threshold : %f\n", etp, efp, classifier.threshold);
if (k > 0)
{
/* save classifier state */
sprintf(buf, "%s/stage-%d.txt", dir, i);
_ccv_write_bbf_stage_classifier(buf, &classifier);
sprintf(buf, "%s/stat.txt", dir);
_ccv_save_bbf_cacade_training_state(buf, i, k, bg, pw, nw, posnum, negnum);
}
if (etp > params.pos_crit && efp < params.neg_crit)
break;
/* TODO: more post-process is needed in here */
/* select the best feature in current distribution through genetic algorithm optimization */
ccv_bbf_feature_t best;
if (params.optimizer == CCV_BBF_GENETIC_OPT)
{
best = _ccv_bbf_genetic_optimize(posdata, rpos, negdata, rneg, params.feature_number, cascade->size, pw, nw);
}
else if (params.optimizer == CCV_BBF_FLOAT_OPT)
{
best = _ccv_bbf_convex_optimize(posdata, rpos, negdata, rneg, 0, cascade->size, pw, nw);
}
else
{
best = _ccv_bbf_genetic_optimize(posdata, rpos, negdata, rneg, params.feature_number, cascade->size, pw, nw);
best = _ccv_bbf_convex_optimize(posdata, rpos, negdata, rneg, &best, cascade->size, pw, nw);
}
double err = _ccv_bbf_error_rate(&best, posdata, rpos, negdata, rneg, cascade->size, pw, nw);
double rw = (1 - err) / err;
totalw = 0;
/* reweight */
for (j = 0; j < rpos; j++)
{
unsigned char *u8[] = {posdata[j], posdata[j] + isizs0, posdata[j] + isizs01};
if (!_ccv_run_bbf_feature(&best, steps, u8))
pw[j] *= rw;
pw[j] *= params.balance_k;
totalw += pw[j];
}
for (j = 0; j < rneg; j++)
{
unsigned char *u8[] = {negdata[j], negdata[j] + isizs0, negdata[j] + isizs01};
if (_ccv_run_bbf_feature(&best, steps, u8))
nw[j] *= rw;
nw[j] *= inv_balance_k;
totalw += nw[j];
}
for (j = 0; j < rpos; j++)
pw[j] = pw[j] / totalw;
for (j = 0; j < rneg; j++)
nw[j] = nw[j] / totalw;
double c = log(rw);
PRINT(CCV_CLI_INFO, "coefficient of feature %d: %f\n", k + 1, c);
classifier.count = k + 1;
/* resizing classifier */
if (k >= cacheK)
{
ccv_bbf_feature_t *feature = (ccv_bbf_feature_t *)ccmalloc(cacheK * 2 * sizeof(ccv_bbf_feature_t));
memcpy(feature, classifier.feature, cacheK * sizeof(ccv_bbf_feature_t));
ccfree(classifier.feature);
float *alpha = (float *)ccmalloc(cacheK * 4 * sizeof(float));
memcpy(alpha, classifier.alpha, cacheK * 2 * sizeof(float));
ccfree(classifier.alpha);
classifier.feature = feature;
classifier.alpha = alpha;
cacheK *= 2;
}
/* setup new feature */
classifier.feature[k] = best;
classifier.alpha[k * 2] = -c;
classifier.alpha[k * 2 + 1] = c;
}
cascade->count = i + 1;
ccv_bbf_stage_classifier_t *stage_classifier = (ccv_bbf_stage_classifier_t *)ccmalloc(cascade->count * sizeof(ccv_bbf_stage_classifier_t));
memcpy(stage_classifier, cascade->stage_classifier, i * sizeof(ccv_bbf_stage_classifier_t));
ccfree(cascade->stage_classifier);
stage_classifier[i] = classifier;
cascade->stage_classifier = stage_classifier;
k = 0;
bg = 0;
for (j = 0; j < rpos; j++)
ccfree(posdata[j]);
for (j = 0; j < rneg; j++)
ccfree(negdata[j]);
}
ccfree(neval);
ccfree(peval);
ccfree(nw);
ccfree(pw);
ccfree(negdata);
ccfree(posdata);
ccfree(cascade);
}
#else
void ccv_bbf_classifier_cascade_new(ccv_dense_matrix_t **posimg, int posnum, char **bgfiles, int bgnum, int negnum, ccv_size_t size, const char *dir, ccv_bbf_new_param_t params)
{
fprintf(stderr, " ccv_bbf_classifier_cascade_new requires libgsl support, please compile ccv with libgsl.\n");
}
#endif
static int _ccv_is_equal(const void *_r1, const void *_r2, void *data)
{
const ccv_comp_t *r1 = (const ccv_comp_t *)_r1;
const ccv_comp_t *r2 = (const ccv_comp_t *)_r2;
int distance = (int)(r1->rect.width * 0.25 + 0.5);
return r2->rect.x <= r1->rect.x + distance &&
r2->rect.x >= r1->rect.x - distance &&
r2->rect.y <= r1->rect.y + distance &&
r2->rect.y >= r1->rect.y - distance &&
r2->rect.width <= (int)(r1->rect.width * 1.5 + 0.5) &&
(int)(r2->rect.width * 1.5 + 0.5) >= r1->rect.width;
}
static int _ccv_is_equal_same_class(const void *_r1, const void *_r2, void *data)
{
const ccv_comp_t *r1 = (const ccv_comp_t *)_r1;
const ccv_comp_t *r2 = (const ccv_comp_t *)_r2;
int distance = (int)(r1->rect.width * 0.25 + 0.5);
return r2->classification.id == r1->classification.id &&
r2->rect.x <= r1->rect.x + distance &&
r2->rect.x >= r1->rect.x - distance &&
r2->rect.y <= r1->rect.y + distance &&
r2->rect.y >= r1->rect.y - distance &&
r2->rect.width <= (int)(r1->rect.width * 1.5 + 0.5) &&
(int)(r2->rect.width * 1.5 + 0.5) >= r1->rect.width;
}
ccv_array_t *ccv_bbf_detect_objects(ccv_dense_matrix_t *a, ccv_bbf_classifier_cascade_t **_cascade, int count, ccv_bbf_param_t params)
{
int hr = a->rows / params.size.height;
int wr = a->cols / params.size.width;
double scale = pow(2., 1. / (params.interval + 1.));
int next = params.interval + 1;
int scale_upto = (int)(log((double)ccv_min(hr, wr)) / log(scale));
ccv_dense_matrix_t **pyr = (ccv_dense_matrix_t **)alloca((scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t *));
memset(pyr, 0, (scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t *));
if (params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width)
ccv_resample(a, &pyr[0], 0, a->rows * _cascade[0]->size.height / params.size.height, a->cols * _cascade[0]->size.width / params.size.width, CCV_INTER_AREA);
else
pyr[0] = a;
int i, j, k, t, x, y, q;
for (i = 1; i < ccv_min(params.interval + 1, scale_upto + next * 2); i++)
ccv_resample(pyr[0], &pyr[i * 4], 0, (int)(pyr[0]->rows / pow(scale, i)), (int)(pyr[0]->cols / pow(scale, i)), CCV_INTER_AREA);
for (i = next; i < scale_upto + next * 2; i++)
ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4], 0, 0, 0);
if (params.accurate)
for (i = next * 2; i < scale_upto + next * 2; i++)
{
ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 1], 0, 1, 0);
ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 2], 0, 0, 1);
ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 3], 0, 1, 1);
}
ccv_array_t *idx_seq;
ccv_array_t *seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
ccv_array_t *seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
ccv_array_t *result_seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
/* detect in multi scale */
for (t = 0; t < count; t++)
{
ccv_bbf_classifier_cascade_t *cascade = _cascade[t];
float scale_x = (float)params.size.width / (float)cascade->size.width;
float scale_y = (float)params.size.height / (float)cascade->size.height;
ccv_array_clear(seq);
for (i = 0; i < scale_upto; i++)
{
int dx[] = {0, 1, 0, 1};
int dy[] = {0, 0, 1, 1};
int i_rows = pyr[i * 4 + next * 8]->rows - (cascade->size.height >> 2);
int steps[] = {pyr[i * 4]->step, pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8]->step};
int i_cols = pyr[i * 4 + next * 8]->cols - (cascade->size.width >> 2);
int paddings[] = {pyr[i * 4]->step * 4 - i_cols * 4,
pyr[i * 4 + next * 4]->step * 2 - i_cols * 2,
pyr[i * 4 + next * 8]->step - i_cols};
for (q = 0; q < (params.accurate ? 4 : 1); q++)
{
unsigned char *u8[] = {pyr[i * 4]->data.u8 + dx[q] * 2 + dy[q] * pyr[i * 4]->step * 2, pyr[i * 4 + next * 4]->data.u8 + dx[q] + dy[q] * pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8 + q]->data.u8};
for (y = 0; y < i_rows; y++)
{
for (x = 0; x < i_cols; x++)
{
float sum;
int flag = 1;
ccv_bbf_stage_classifier_t *classifier = cascade->stage_classifier;
for (j = 0; j < cascade->count; ++j, ++classifier)
{
sum = 0;
float *alpha = classifier->alpha;
ccv_bbf_feature_t *feature = classifier->feature;
for (k = 0; k < classifier->count; ++k, alpha += 2, ++feature)
sum += alpha[_ccv_run_bbf_feature(feature, steps, u8)];
if (sum < classifier->threshold)
{
flag = 0;
break;
}
}
if (flag)
{
ccv_comp_t comp;
comp.rect = ccv_rect((int)((x * 4 + dx[q] * 2) * scale_x + 0.5), (int)((y * 4 + dy[q] * 2) * scale_y + 0.5), (int)(cascade->size.width * scale_x + 0.5), (int)(cascade->size.height * scale_y + 0.5));
comp.neighbors = 1;
comp.classification.id = t;
comp.classification.confidence = sum;
ccv_array_push(seq, &comp);
}
u8[0] += 4;
u8[1] += 2;
u8[2] += 1;
}
u8[0] += paddings[0];
u8[1] += paddings[1];
u8[2] += paddings[2];
}
}
scale_x *= scale;
scale_y *= scale;
}
/* the following code from OpenCV's haar feature implementation */
if (params.min_neighbors == 0)
{
for (i = 0; i < seq->rnum; i++)
{
ccv_comp_t *comp = (ccv_comp_t *)ccv_array_get(seq, i);
ccv_array_push(result_seq, comp);
}
}
else
{
idx_seq = 0;
ccv_array_clear(seq2);
// group retrieved rectangles in order to filter out noise
int ncomp = ccv_array_group(seq, &idx_seq, _ccv_is_equal_same_class, 0);
ccv_comp_t *comps = (ccv_comp_t *)ccmalloc((ncomp + 1) * sizeof(ccv_comp_t));
memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t));
// count number of neighbors
for (i = 0; i < seq->rnum; i++)
{
ccv_comp_t r1 = *(ccv_comp_t *)ccv_array_get(seq, i);
int idx = *(int *)ccv_array_get(idx_seq, i);
if (comps[idx].neighbors == 0)
comps[idx].classification.confidence = r1.classification.confidence;
++comps[idx].neighbors;
comps[idx].rect.x += r1.rect.x;
comps[idx].rect.y += r1.rect.y;
comps[idx].rect.width += r1.rect.width;
comps[idx].rect.height += r1.rect.height;
comps[idx].classification.id = r1.classification.id;
comps[idx].classification.confidence = ccv_max(comps[idx].classification.confidence, r1.classification.confidence);
}
// calculate average bounding box
for (i = 0; i < ncomp; i++)
{
int n = comps[i].neighbors;
if (n >= params.min_neighbors)
{
ccv_comp_t comp;
comp.rect.x = (comps[i].rect.x * 2 + n) / (2 * n);
comp.rect.y = (comps[i].rect.y * 2 + n) / (2 * n);
comp.rect.width = (comps[i].rect.width * 2 + n) / (2 * n);
comp.rect.height = (comps[i].rect.height * 2 + n) / (2 * n);
comp.neighbors = comps[i].neighbors;
comp.classification.id = comps[i].classification.id;
comp.classification.confidence = comps[i].classification.confidence;
ccv_array_push(seq2, &comp);
}
}
// filter out small face rectangles inside large face rectangles
for (i = 0; i < seq2->rnum; i++)
{
ccv_comp_t r1 = *(ccv_comp_t *)ccv_array_get(seq2, i);
int flag = 1;
for (j = 0; j < seq2->rnum; j++)
{
ccv_comp_t r2 = *(ccv_comp_t *)ccv_array_get(seq2, j);
int distance = (int)(r2.rect.width * 0.25 + 0.5);
if (i != j &&
r1.classification.id == r2.classification.id &&
r1.rect.x >= r2.rect.x - distance &&
r1.rect.y >= r2.rect.y - distance &&
r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance &&
r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance &&
(r2.neighbors > ccv_max(3, r1.neighbors) || r1.neighbors < 3))
{
flag = 0;
break;
}
}
if (flag)
ccv_array_push(result_seq, &r1);
}
ccv_array_free(idx_seq);
ccfree(comps);
}
}
ccv_array_free(seq);
ccv_array_free(seq2);
ccv_array_t *result_seq2;
/* the following code from OpenCV's haar feature implementation */
if (params.flags & CCV_BBF_NO_NESTED)
{
result_seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
idx_seq = 0;
// group retrieved rectangles in order to filter out noise
int ncomp = ccv_array_group(result_seq, &idx_seq, _ccv_is_equal, 0);
ccv_comp_t *comps = (ccv_comp_t *)ccmalloc((ncomp + 1) * sizeof(ccv_comp_t));
memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t));
// count number of neighbors
for (i = 0; i < result_seq->rnum; i++)
{
ccv_comp_t r1 = *(ccv_comp_t *)ccv_array_get(result_seq, i);
int idx = *(int *)ccv_array_get(idx_seq, i);
if (comps[idx].neighbors == 0 || comps[idx].classification.confidence < r1.classification.confidence)
{
comps[idx].classification.confidence = r1.classification.confidence;
comps[idx].neighbors = 1;
comps[idx].rect = r1.rect;
comps[idx].classification.id = r1.classification.id;
}
}
// calculate average bounding box
for (i = 0; i < ncomp; i++)
if (comps[i].neighbors)
ccv_array_push(result_seq2, &comps[i]);
ccv_array_free(result_seq);
ccfree(comps);
}
else
{
result_seq2 = result_seq;
}
for (i = 1; i < scale_upto + next * 2; i++)
ccv_matrix_free(pyr[i * 4]);
if (params.accurate)
for (i = next * 2; i < scale_upto + next * 2; i++)
{
ccv_matrix_free(pyr[i * 4 + 1]);
ccv_matrix_free(pyr[i * 4 + 2]);
ccv_matrix_free(pyr[i * 4 + 3]);
}
if (params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width)
ccv_matrix_free(pyr[0]);
return result_seq2;
}
ccv_bbf_classifier_cascade_t *ccv_bbf_read_classifier_cascade(const char *directory)
{
char buf[1024];
sprintf(buf, "%s/cascade.txt", directory);
int s, i;
FILE *r = fopen(buf, "r");
if (r == 0)
return 0;
ccv_bbf_classifier_cascade_t *cascade = (ccv_bbf_classifier_cascade_t *)ccmalloc(sizeof(ccv_bbf_classifier_cascade_t));
s = fscanf(r, "%d %d %d", &cascade->count, &cascade->size.width, &cascade->size.height);
assert(s > 0);
cascade->stage_classifier = (ccv_bbf_stage_classifier_t *)ccmalloc(cascade->count * sizeof(ccv_bbf_stage_classifier_t));
for (i = 0; i < cascade->count; i++)
{
sprintf(buf, "%s/stage-%d.txt", directory, i);
if (_ccv_read_bbf_stage_classifier(buf, &cascade->stage_classifier[i]) < 0)
{
cascade->count = i;
break;
}
}
fclose(r);
return cascade;
}
ccv_bbf_classifier_cascade_t *ccv_bbf_classifier_cascade_read_binary(char *s)
{
int i;
ccv_bbf_classifier_cascade_t *cascade = (ccv_bbf_classifier_cascade_t *)ccmalloc(sizeof(ccv_bbf_classifier_cascade_t));
memcpy(&cascade->count, s, sizeof(cascade->count));
s += sizeof(cascade->count);
memcpy(&cascade->size.width, s, sizeof(cascade->size.width));
s += sizeof(cascade->size.width);
memcpy(&cascade->size.height, s, sizeof(cascade->size.height));
s += sizeof(cascade->size.height);
ccv_bbf_stage_classifier_t *classifier = cascade->stage_classifier = (ccv_bbf_stage_classifier_t *)ccmalloc(cascade->count * sizeof(ccv_bbf_stage_classifier_t));
for (i = 0; i < cascade->count; i++, classifier++)
{
memcpy(&classifier->count, s, sizeof(classifier->count));
s += sizeof(classifier->count);
memcpy(&classifier->threshold, s, sizeof(classifier->threshold));
s += sizeof(classifier->threshold);
classifier->feature = (ccv_bbf_feature_t *)ccmalloc(classifier->count * sizeof(ccv_bbf_feature_t));
classifier->alpha = (float *)ccmalloc(classifier->count * 2 * sizeof(float));
memcpy(classifier->feature, s, classifier->count * sizeof(ccv_bbf_feature_t));
s += classifier->count * sizeof(ccv_bbf_feature_t);
memcpy(classifier->alpha, s, classifier->count * 2 * sizeof(float));
s += classifier->count * 2 * sizeof(float);
}
return cascade;
}
int ccv_bbf_classifier_cascade_write_binary(ccv_bbf_classifier_cascade_t *cascade, char *s, int slen)
{
int i;
int len = sizeof(cascade->count) + sizeof(cascade->size.width) + sizeof(cascade->size.height);
ccv_bbf_stage_classifier_t *classifier = cascade->stage_classifier;
for (i = 0; i < cascade->count; i++, classifier++)
len += sizeof(classifier->count) + sizeof(classifier->threshold) + classifier->count * sizeof(ccv_bbf_feature_t) + classifier->count * 2 * sizeof(float);
if (slen >= len)
{
memcpy(s, &cascade->count, sizeof(cascade->count));
s += sizeof(cascade->count);
memcpy(s, &cascade->size.width, sizeof(cascade->size.width));
s += sizeof(cascade->size.width);
memcpy(s, &cascade->size.height, sizeof(cascade->size.height));
s += sizeof(cascade->size.height);
classifier = cascade->stage_classifier;
for (i = 0; i < cascade->count; i++, classifier++)
{
memcpy(s, &classifier->count, sizeof(classifier->count));
s += sizeof(classifier->count);
memcpy(s, &classifier->threshold, sizeof(classifier->threshold));
s += sizeof(classifier->threshold);
memcpy(s, classifier->feature, classifier->count * sizeof(ccv_bbf_feature_t));
s += classifier->count * sizeof(ccv_bbf_feature_t);
memcpy(s, classifier->alpha, classifier->count * 2 * sizeof(float));
s += classifier->count * 2 * sizeof(float);
}
}
return len;
}
void ccv_bbf_classifier_cascade_free(ccv_bbf_classifier_cascade_t *cascade)
{
int i;
for (i = 0; i < cascade->count; ++i)
{
ccfree(cascade->stage_classifier[i].feature);
ccfree(cascade->stage_classifier[i].alpha);
}
ccfree(cascade->stage_classifier);
ccfree(cascade);
}