1
0
Fork 0
yuzu-mirror/src/core/core_timing.cpp
archshift ef24e72b26 Asserts: break/crash program, fit to style guide; log.h->assert.h
Involves making asserts use printf instead of the log functions (log functions are asynchronous and, as such, the log won't be printed in time)
As such, the log type argument was removed (printf obviously can't use it, and it's made obsolete by the file and line printing)

Also removed some GEKKO cruft.
2015-02-10 18:30:31 -08:00

549 lines
14 KiB
C++

// Copyright (c) 2012- PPSSPP Project / Dolphin Project.
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <atomic>
#include <cstdio>
#include <mutex>
#include <vector>
#include "common/assert.h"
#include "common/chunk_file.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_timing.h"
int g_clock_rate_arm11 = 268123480;
// is this really necessary?
#define INITIAL_SLICE_LENGTH 20000
#define MAX_SLICE_LENGTH 100000000
namespace CoreTiming
{
struct EventType
{
EventType() {}
EventType(TimedCallback cb, const char* n)
: callback(cb), name(n) {}
TimedCallback callback;
const char* name;
};
static std::vector<EventType> event_types;
struct BaseEvent
{
s64 time;
u64 userdata;
int type;
};
typedef LinkedListItem<BaseEvent> Event;
static Event* first;
static Event* ts_first;
static Event* ts_last;
// event pools
static Event* event_pool = nullptr;
static Event* event_ts_pool = nullptr;
static int allocated_ts_events = 0;
// Optimization to skip MoveEvents when possible.
static std::atomic<bool> has_ts_events(false);
int g_slice_length;
static s64 global_timer;
static s64 idled_cycles;
static s64 last_global_time_ticks;
static s64 last_global_time_us;
static std::recursive_mutex external_event_section;
// Warning: not included in save state.
using AdvanceCallback = void(int cycles_executed);
static AdvanceCallback* advance_callback = nullptr;
static std::vector<MHzChangeCallback> mhz_change_callbacks;
void FireMhzChange() {
for (auto callback : mhz_change_callbacks)
callback();
}
void SetClockFrequencyMHz(int cpu_mhz) {
// When the mhz changes, we keep track of what "time" it was before hand.
// This way, time always moves forward, even if mhz is changed.
last_global_time_us = GetGlobalTimeUs();
last_global_time_ticks = GetTicks();
g_clock_rate_arm11 = cpu_mhz * 1000000;
// TODO: Rescale times of scheduled events?
FireMhzChange();
}
int GetClockFrequencyMHz() {
return g_clock_rate_arm11 / 1000000;
}
u64 GetGlobalTimeUs() {
s64 ticks_since_last = GetTicks() - last_global_time_ticks;
int freq = GetClockFrequencyMHz();
s64 us_since_last = ticks_since_last / freq;
return last_global_time_us + us_since_last;
}
Event* GetNewEvent() {
if (!event_pool)
return new Event;
Event* event = event_pool;
event_pool = event->next;
return event;
}
Event* GetNewTsEvent() {
allocated_ts_events++;
if (!event_ts_pool)
return new Event;
Event* event = event_ts_pool;
event_ts_pool = event->next;
return event;
}
void FreeEvent(Event* event) {
event->next = event_pool;
event_pool = event;
}
void FreeTsEvent(Event* event) {
event->next = event_ts_pool;
event_ts_pool = event;
allocated_ts_events--;
}
int RegisterEvent(const char* name, TimedCallback callback) {
event_types.push_back(EventType(callback, name));
return (int)event_types.size() - 1;
}
void AntiCrashCallback(u64 userdata, int cycles_late) {
LOG_CRITICAL(Core_Timing, "Savestate broken: an unregistered event was called.");
Core::Halt("invalid timing events");
}
void RestoreRegisterEvent(int event_type, const char* name, TimedCallback callback) {
if (event_type >= (int)event_types.size())
event_types.resize(event_type + 1, EventType(AntiCrashCallback, "INVALID EVENT"));
event_types[event_type] = EventType(callback, name);
}
void UnregisterAllEvents() {
if (first)
PanicAlert("Cannot unregister events with events pending");
event_types.clear();
}
void Init() {
Core::g_app_core->down_count = INITIAL_SLICE_LENGTH;
g_slice_length = INITIAL_SLICE_LENGTH;
global_timer = 0;
idled_cycles = 0;
last_global_time_ticks = 0;
last_global_time_us = 0;
has_ts_events = 0;
mhz_change_callbacks.clear();
}
void Shutdown() {
MoveEvents();
ClearPendingEvents();
UnregisterAllEvents();
while (event_pool) {
Event* event = event_pool;
event_pool = event->next;
delete event;
}
std::lock_guard<std::recursive_mutex> lock(external_event_section);
while (event_ts_pool) {
Event* event = event_ts_pool;
event_ts_pool = event->next;
delete event;
}
}
u64 GetTicks() {
return (u64)global_timer + g_slice_length - Core::g_app_core->down_count;
}
u64 GetIdleTicks() {
return (u64)idled_cycles;
}
// This is to be called when outside threads, such as the graphics thread, wants to
// schedule things to be executed on the main thread.
void ScheduleEvent_Threadsafe(s64 cycles_into_future, int event_type, u64 userdata) {
std::lock_guard<std::recursive_mutex> lock(external_event_section);
Event* new_event = GetNewTsEvent();
new_event->time = GetTicks() + cycles_into_future;
new_event->type = event_type;
new_event->next = 0;
new_event->userdata = userdata;
if (!ts_first)
ts_first = new_event;
if (ts_last)
ts_last->next = new_event;
ts_last = new_event;
has_ts_events = true;
}
// Same as ScheduleEvent_Threadsafe(0, ...) EXCEPT if we are already on the CPU thread
// in which case the event will get handled immediately, before returning.
void ScheduleEvent_Threadsafe_Immediate(int event_type, u64 userdata) {
if (false) //Core::IsCPUThread())
{
std::lock_guard<std::recursive_mutex> lock(external_event_section);
event_types[event_type].callback(userdata, 0);
}
else
ScheduleEvent_Threadsafe(0, event_type, userdata);
}
void ClearPendingEvents() {
while (first) {
Event* event = first->next;
FreeEvent(first);
first = event;
}
}
void AddEventToQueue(Event* new_event) {
Event* prev_event = nullptr;
Event** next_event = &first;
for (;;) {
Event*& next = *next_event;
if (!next || new_event->time < next->time) {
new_event->next = next;
next = new_event;
break;
}
prev_event = next;
next_event = &prev_event->next;
}
}
void ScheduleEvent(s64 cycles_into_future, int event_type, u64 userdata) {
Event* new_event = GetNewEvent();
new_event->userdata = userdata;
new_event->type = event_type;
new_event->time = GetTicks() + cycles_into_future;
AddEventToQueue(new_event);
}
s64 UnscheduleEvent(int event_type, u64 userdata) {
s64 result = 0;
if (!first)
return result;
while (first) {
if (first->type == event_type && first->userdata == userdata) {
result = first->time - GetTicks();
Event* next = first->next;
FreeEvent(first);
first = next;
} else {
break;
}
}
if (!first)
return result;
Event* prev_event = first;
Event* ptr = prev_event->next;
while (ptr) {
if (ptr->type == event_type && ptr->userdata == userdata) {
result = ptr->time - GetTicks();
prev_event->next = ptr->next;
FreeEvent(ptr);
ptr = prev_event->next;
} else {
prev_event = ptr;
ptr = ptr->next;
}
}
return result;
}
s64 UnscheduleThreadsafeEvent(int event_type, u64 userdata) {
s64 result = 0;
std::lock_guard<std::recursive_mutex> lock(external_event_section);
if (!ts_first)
return result;
while (ts_first) {
if (ts_first->type == event_type && ts_first->userdata == userdata) {
result = ts_first->time - GetTicks();
Event* next = ts_first->next;
FreeTsEvent(ts_first);
ts_first = next;
} else {
break;
}
}
if (!ts_first)
{
ts_last = nullptr;
return result;
}
Event* prev_event = ts_first;
Event* next = prev_event->next;
while (next) {
if (next->type == event_type && next->userdata == userdata) {
result = next->time - GetTicks();
prev_event->next = next->next;
if (next == ts_last)
ts_last = prev_event;
FreeTsEvent(next);
next = prev_event->next;
} else {
prev_event = next;
next = next->next;
}
}
return result;
}
// Warning: not included in save state.
void RegisterAdvanceCallback(AdvanceCallback* callback) {
advance_callback = callback;
}
void RegisterMHzChangeCallback(MHzChangeCallback callback) {
mhz_change_callbacks.push_back(callback);
}
bool IsScheduled(int event_type) {
if (!first)
return false;
Event* event = first;
while (event) {
if (event->type == event_type)
return true;
event = event->next;
}
return false;
}
void RemoveEvent(int event_type) {
if (!first)
return;
while (first) {
if (first->type == event_type) {
Event *next = first->next;
FreeEvent(first);
first = next;
} else {
break;
}
}
if (!first)
return;
Event* prev = first;
Event* next = prev->next;
while (next) {
if (next->type == event_type) {
prev->next = next->next;
FreeEvent(next);
next = prev->next;
} else {
prev = next;
next = next->next;
}
}
}
void RemoveThreadsafeEvent(int event_type) {
std::lock_guard<std::recursive_mutex> lock(external_event_section);
if (!ts_first)
return;
while (ts_first) {
if (ts_first->type == event_type) {
Event* next = ts_first->next;
FreeTsEvent(ts_first);
ts_first = next;
} else {
break;
}
}
if (!ts_first) {
ts_last = nullptr;
return;
}
Event* prev = ts_first;
Event* next = prev->next;
while (next) {
if (next->type == event_type) {
prev->next = next->next;
if (next == ts_last)
ts_last = prev;
FreeTsEvent(next);
next = prev->next;
} else {
prev = next;
next = next->next;
}
}
}
void RemoveAllEvents(int event_type) {
RemoveThreadsafeEvent(event_type);
RemoveEvent(event_type);
}
// This raise only the events required while the fifo is processing data
void ProcessFifoWaitEvents() {
while (first) {
if (first->time <= (s64)GetTicks()) {
Event* evt = first;
first = first->next;
event_types[evt->type].callback(evt->userdata, (int)(GetTicks() - evt->time));
FreeEvent(evt);
} else {
break;
}
}
}
void MoveEvents() {
has_ts_events = false;
std::lock_guard<std::recursive_mutex> lock(external_event_section);
// Move events from async queue into main queue
while (ts_first) {
Event* next = ts_first->next;
AddEventToQueue(ts_first);
ts_first = next;
}
ts_last = nullptr;
// Move free events to threadsafe pool
while (allocated_ts_events > 0 && event_pool) {
Event* event = event_pool;
event_pool = event->next;
event->next = event_ts_pool;
event_ts_pool = event;
allocated_ts_events--;
}
}
void ForceCheck() {
int cycles_executed = g_slice_length - Core::g_app_core->down_count;
global_timer += cycles_executed;
// This will cause us to check for new events immediately.
Core::g_app_core->down_count = 0;
// But let's not eat a bunch more time in Advance() because of this.
g_slice_length = 0;
}
void Advance() {
int cycles_executed = g_slice_length - Core::g_app_core->down_count;
global_timer += cycles_executed;
Core::g_app_core->down_count = g_slice_length;
if (has_ts_events)
MoveEvents();
ProcessFifoWaitEvents();
if (!first) {
if (g_slice_length < 10000) {
g_slice_length += 10000;
Core::g_app_core->down_count += g_slice_length;
}
} else {
// Note that events can eat cycles as well.
int target = (int)(first->time - global_timer);
if (target > MAX_SLICE_LENGTH)
target = MAX_SLICE_LENGTH;
const int diff = target - g_slice_length;
g_slice_length += diff;
Core::g_app_core->down_count += diff;
}
if (advance_callback)
advance_callback(cycles_executed);
}
void LogPendingEvents() {
Event* event = first;
while (event) {
//LOG_TRACE(Core_Timing, "PENDING: Now: %lld Pending: %lld Type: %d", globalTimer, next->time, next->type);
event = event->next;
}
}
void Idle(int max_idle) {
int cycles_down = Core::g_app_core->down_count;
if (max_idle != 0 && cycles_down > max_idle)
cycles_down = max_idle;
if (first && cycles_down > 0) {
int cycles_executed = g_slice_length - Core::g_app_core->down_count;
int cycles_next_event = (int)(first->time - global_timer);
if (cycles_next_event < cycles_executed + cycles_down) {
cycles_down = cycles_next_event - cycles_executed;
// Now, now... no time machines, please.
if (cycles_down < 0)
cycles_down = 0;
}
}
LOG_TRACE(Core_Timing, "Idle for %i cycles! (%f ms)", cycles_down, cycles_down / (float)(g_clock_rate_arm11 * 0.001f));
idled_cycles += cycles_down;
Core::g_app_core->down_count -= cycles_down;
if (Core::g_app_core->down_count == 0)
Core::g_app_core->down_count = -1;
}
std::string GetScheduledEventsSummary() {
Event* event = first;
std::string text = "Scheduled events\n";
text.reserve(1000);
while (event) {
unsigned int t = event->type;
if (t >= event_types.size())
PanicAlert("Invalid event type"); // %i", t);
const char* name = event_types[event->type].name;
if (!name)
name = "[unknown]";
text += Common::StringFromFormat("%s : %i %08x%08x\n", name, (int)event->time,
(u32)(event->userdata >> 32), (u32)(event->userdata));
event = event->next;
}
return text;
}
} // namespace